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I first became interested in the p(d, 2p) reaction about 30 years ago while working

on the 1 GeV/nucleon data taken with the Dubna hydrogen bubble chamber [1]. I

am delighted to say that two of my old collaborators Mikhail Nioradze and Viktor

Glagolev are with us today and, in fact, Viktor will describe the much more recent

Dubna charge-exchange programme later in this session.

If the proton-proton force had been a bit stronger, then the di-proton would

have been bound like the deuteron. As it is, there is a virtual 1S 0 state so close to

threshold that one always sees a very sharp enhancement in the pp effective mass

spectrum at the lowest excitation (excess) energy Qpp = k2/mp, where k is the pp

relative momentum. In homage to the Dubna experiment, let me start in Fig. 1

by showing the excitation spectrum for the dp → (pp)n reaction in two regions of

momentum transfer t = −q2 between the initial proton and final neutron. It is hard

work with a bubble chamber to get sufficient statistics in fine steps of Qpp to show

the 1S 0 enhancement clearly but its effects are shown here in the spectrum with fsi

(solid curve) and without (chain curve). Andro Kacharava in the following talk will

discuss data from ANKE analysed in only the first 2-3 MeV of excitation energy.

At these low momentum transfers one can think of the reaction as being a simple

charge exchange of the neutron in the deuteron on the proton in the target, np → pn,

with the proton in the deuteron acting as a kind of spectator. The trouble is that at

small t and low Qpp one often doesn’t know which is the spectator and which results

from the struck particle.
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Figure 1: Dubna data [1] on the dp → (pp)n reaction at 1 GeV/nucleon as a function
of the excitation energy in the pp system for (a) |t| < 0.1 (GeV/c)2, and (b) 0.1 <
|t| < 0.4 (GeV/c)2. The impulse approximation predictions are shown with (solid
curve) and without (chain curve) the 1S 0 fsi.
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Figure 2: Angular asymmetry parameter for (a) |t| < 0.1 (GeV/c)2, and (b) 0.1 <
|t| < 0.4 (GeV/c)2 [1]. The impulse approximation predictions are shown with (solid
curve) and without (chain curve) the 1S 0 fsi.

If one takes the plausible approach of calling the slower proton in deuteron rest

frame the spectator, one often gets it wrong and this mistake is made worse by

the pp fsi. If the deuteron is unpolarised then the spectator distribution should be

essentially isotropic in the deuteron rest frame but, with the practical definition of

spectator, it need not be. The distribution in the angular asymmetry parameter

A ≡ N(cos α > 0)−N(cos α < 0)

N(cos α > 0) + N(cos α < 0)
, (1)

where α is the angle between the spectator momentum and the momentum transfer

vector, is shown in Fig. 2. Such effects can easily be treated theoretically since

they depend primarily upon the low energy nucleon-nucleon interaction. This is

important because, as Ralf Schleichert will discuss later in this session, such studies

might be possible at COSY using purely the spectator telescopes.

The transition from a deuteron to the 1S 0 state of two protons flips both the

spin and isospin of the NN system and it is a perfect example of a Gamow-Teller

transition. Such transitions can have strong polarisation dependence and this led

David Bugg and myself in the mid 1980s to wonder whether the ~dp → (pp)n reaction

could have strong enough analysing powers to justify its use as the basis of a deuteron

polarimeter [2]. The diagram that we were considering was that of the impulse

approximation of Fig. 3 where, at small momentum transfers between the initial

proton and final neutron, one has a simple charge exchange on the neutron, with

the final proton possibly being affected by the pp fsi. The overall amplitude must

therefore be proportional to f(np → pn) times a form factor reflecting the overlap

of the spatial parts of the initial deuteron and final pp wave functions.
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Figure 3: Impulse approximation diagram for proton charge-exchange on the
deuteron at small momentum transfers.

To understand the spin dependence of the deuteron charge exchange, one must

first describe the situation in the NN system. The amplitude of the elementary

np → pn reaction in the cm system can be written in terms of five scalar amplitudes

fnp = α+ iγ(σn +σp)n+β(σn ·n)(σp ·n)+ δ(σn ·m)(σp ·m)+ ε(σn · l)(σp · l), (2)

where σn and σp are the Pauli matrices for neutron and proton, respectively. The

orthogonal unit vectors are defined in terms of the initial (k) and final (k′) momenta

as

n = ŷ =
k× k′

|k× k′| ,

m = x̂′ =
k′ − k

|k′ − k| ,

l = ẑ′ =
k′ + k

|k′ + k| . (3)

The amplitudes are normalised such that the elementary np → pn differential cross

section has the form
(

dσ

dt

)

np→pn

= Inp = |α|2 + |β|2 + 2|γ|2 + |δ|2 + |ε|2. (4)

As shown in Fig. 4, the spin-flip amplitudes charge-exchange amplitudes are

dominantly real, with β and ε varying quite smoothly with momentum transfer

q (=
√−t). However the δ amplitude falls off rapidly and even changes sign at

about q = mπ. This is because the very long range one-pion-exchange amplitude

contributes here and this strong variation will give rise to similar behaviour in some

of the polarisation observables. Note that in the forward direction, kinematics forces

us to have β(0) = δ(0) because we cannot tell there the x from the y direction.
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Figure 4: Real (a) and imaginary (b) parts of the np charge exchange amplitudes
at 142 MeV: β (long dashes), −iγ (chain), δ (solid curve), and ε (short dashes).
(c): Interpolations of the values of |β(0)| = |δ(0)| (solid curve) and |ε(0)| (dashed
curve) as a function of deuteron momentum or proton kinetic energy. Both figures
are taken from Ref. [2].

The general structure of these amplitudes seems to be remarkably stable as

one varies the beam energy but what does change is the relative size of the spin-

longitudinal (ε) and the spin-transverse (β, δ) terms, as illustrated also in Fig. 4.

The impulse approximation predictions are easy to write down if we confine

ourselves to just the 1S 0 component of the final pp state.

d4σ

dt d3k
= 1

3

{(
|β|2 + |γ|2 + |ε|2

) ∣∣∣S−(k, 1
2
q)

∣∣∣
2
+ |δ|2

∣∣∣S+(k, 1
2
q)

∣∣∣
2
}

, (5)

Ax′x′
d4σ

dt d3k
= 1

3

{(
|β|2 + |γ|2 + |ε|2

) ∣∣∣S−(k, 1
2
q)

∣∣∣
2 − 2|δ|2

∣∣∣S+(k, 1
2
q)

∣∣∣
2
}

, (6)

Ayy
d4σ

dt d3k
= 1

3

{(
−2|β|2 − 2|γ|2 + |ε|2

) ∣∣∣S−(k, 1
2
q)

∣∣∣
2
+ |δ|2

∣∣∣S+(k, 1
2
q)

∣∣∣
2
}

, (7)

Ax′z′ = Ay = 0 . (8)
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Figure 5: Predictions for the spherical tensor analysing powers for the ~dp → (pp)1S 0
n

reaction in impulse approximation [2].

Here the transition form factors involve the S and D deuteron radial functions:

S+(k, q) = 〈 1S 0 |j0(qr)|S 〉+
√

2 〈 1S 0 |j2(qr)|D 〉 ,

S−(k, q) = 〈 1S 0 |j0(qr)|S 〉 − 〈 1S 0 |j2(qr)|D 〉 /
√

2 . (9)

The description of spin-1 analysing powers is much more complicated than that

for spin-1
2

and the above formulae are written down in a system where one quantises

along the mean of the initial and final c.m. proton and neutron momenta. To compare

Andro’s experimental data with theory away from the forward direction one has to

do a kinematic Wigner rotation which mixes some of the components [3]. The second

complication is that there are two alternative descriptions of analysing powers. That

in Eqs. (6-8) is in the Cartesian basis but one also uses the spherical tensors t`m for

which the Wigner rotation is slightly more transparent. The relation between the

two is

Axx = −
√

1
2
t20 +

√
3 Re (t22) ,

Ayy = −
√

1
2
t20 −

√
3 Re (t22) ,

Ay = 2
√

1
3
Re (it11) . (10)

The predictions for the tensor analysing powers from the original paper with

David Bugg [2] are shown in Fig. 5. The strong energy variation comes principally

from the variation of |β(0)|/|ε(0)| but the dramatic angular dependence arises mainly
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from the one-pion-exchange pole in the δ-amplitude. Note for example that t20 peaks

for q ≈ mπ.

I will not discuss here corrections arising from multiple scattering or from the

variation of effective beam energy with momentum transfer, both of which tend to

affect the cross section more than the analysing powers. It should be noted that to

extract the cross section experimentally one has to have a very good determination

of the excitation energy Qpp, and this is one of the major challenges. I also have no

time to discuss sum rules, where one integrates over all Qpp.

The formulae were tested in an extensive series of experiments up to Td = 2 GeV

at the SPESIV spectrometer at Saclay [4], where they also investigated the ~d 12C →
(pp)1S 0

12B∗ reaction. However, the study of ~dp → (pp)1S 0
∆0 did not live up to its

promise because the form factor S(k, q) drops off too fast with momentum transfer

to give sufficiently high counting rates in the small aperture SPESIV spectrometer.

Let me show instead the comparison of theory with experiment at the lower

energy of 350 MeV by the Grenoble group [5]. The differential cross section in Fig. 6

is well reproduced, though it should be noted that both experiment [5] and theory [6]

should be multiplied by a factor of two!

The analysing powers of Fig. 7 are equally successful, though some of the small

deviations could be due to effects of multiple scatterings that have not been included.

However, I want to insist that one gets extra information from regions away from

the 1S 0 peak through looking at the angular distribution of the pp relative momen-

tum. This is particularly important in the higher Qpp regions, where P -waves are

significant. Although we have really only examined the ANKE data with a 2 MeV

cut in Qpp, there are also a lot of events at higher Qpp.

The results of the Grenoble group were used as the basis for the construction of

a deuteron polarimeter (POLDER) which was employed at Saclay to measure the

polarisation of the scattered deuteron in the d 12C → ~d 12C∗(12.7 MeV) [7]. More

interestingly, it was used at J-Lab for the measurement of the polarisation of the

recoil deuteron from elastic electron-deuteron scattering [8]. This allowed the sep-

aration of the spherical and quadrupole form factors out to the highest momentum

transfers yet achieved.
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Figure 6: Differential cross section for the dp → (pp)n reaction at 350 MeV for
different cuts in the pp excitation energy. The experimental data of the Grenoble
group [5] is compared with impulse approximation predictions [6]. Note that the
cross section scale is too low by a factor of two!
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Figure 7: Cartesian analysing powers for the dp → (pp)n reaction at 350 MeV for
different cuts in the pp excitation energy. The experimental data of the Grenoble
group [5] is compared with impulse approximation predictions [6].

The spin-selectivity of the reaction is also being used to study nuclear struc-

ture. Thus at 260 MeV [9] and 171 MeV [10] there have been ~d 12C → (pp)1S 0
12B∗

experiments to search for Gamow-Teller strengths (particularly 0− levels) in 12B [11].

In summary, although there are correction terms, impulse approximation gives

a very reasonable first description of the ~dp → (pp)n reaction at low momentum

transfers at low pp excitation energies. With known np → pn amplitudes, it is pos-

sible to estimate quite accurately the polarisation observables. Alternatively, if one

measures the cross section and analysing powers, it is possible to extract informa-

tion on the amplitudes which, at the NN level, would require the measurement of a

spin-transfer in the ~np → ~pn reaction.

The future Physics programme at ANKE will also involve the measurement of

spin-correlation coefficients involving the initial deuteron and proton. These will

give access to the relative phases of some of the amplitudes. For example, for the

production of the 1S 0 state [12],

Cy;y
d4σ

dt d3k
= −2

3
Re (ε∗δ) S−(k, 1

2
q) S+(k, 1

2
q) , (11)

and this information is very hard to achieve directly in np charge exchange.
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Andro Kacharava will now present (in English) the results that we already have

on the (~d, 2p) reaction from a very preliminary but very successful run at ANKE.

However, let me draw your attention also to the talk of Ralf Schleichert where he

will (I hope) present the possibility of measuring the ~d(~p, 2p)n reaction by using a

polarised gas cell and detecting both low energy protons in separate silicon tele-

scopes. The resolution in both momentum transfer and excitation energy should be

excellent and such a configuration would allow us to study deuteron charge exchange

up to the maximum COSY proton energy, but I will let Ralf describe this.

This brings me back to the beginning of my talk and the Dubna measurement of

charge exchange. One has to be careful about not to be careless in defining which is

the spectator and which proton comes from the struck neutron. Otherwise one will

generate false angular asymmetries. Leave that problem to the theorists — we can

handle it!
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