Caucasian-German School and Workshop on Hadron Physics
Tbilisi Sept. 04

Investigation of the 3 He η final state in the reaction $dp \rightarrow {}^{3}$ He η at ANKE

Timo Mersmann
Institut für Kernphysik
Westfälische Wilhelms-Universität
Münster

Motivation for dp→³He η measurement ANKE-Proposal 137, April 04

- "The η^{-3} He scattering length revisited", Sibirtsev et. al.
 - Existence of η-mesic nuclei still open issue of research
 - · Light nuclei like 3He accessible to a microscopic treatment
 - The scattering length is closely related to the properties of a bound state
 - The magnitude of the real part of the scattering length can be extracted from the energy dependency of the production cross section
 - · A "Strong hint for a bound state" is possible
- New dp \rightarrow ³He η measurements are required !!!

Transition amplitudes $|f|^2$ for $dp \rightarrow {}^3He \eta$

$$\frac{d\sigma}{d\Omega} = \frac{p_{\eta}}{p_{d}} \cdot \left| f\left(p_{\eta}\right) \right|^{2}$$

$$f(p_{\eta}) = \frac{f_{p}}{1 - i p_{\eta} \cdot a_{\eta^{3} He}}$$

- Determination of:
 - · Transition amplitude f
 - Scattering length a (f : s-wave production

operator)

Discrepancies for the available data

- near threshold (Mayer, Berger)
- at higher excess energies (Q ≈ 60 MeV)

Goals for a dp \rightarrow ³He η measurement

- · Precise measured energy dependency of the cross section
 - near threshold
 - · up to intermediate excess energies
- Angular spectra of the η meson (above 5 MeV excess energy)
 - full angular acceptance in $cos(\theta)$ is required
- · Minimisation of systematic uncertainties
 - · one experimental setup for all investigated excess energies
 - · small acceptance uncertainties

High statistic measurements on total and differential cross sections at several excess energies are needed

Geometrical acceptance for $dp \rightarrow {}^{3}He \eta$

Geometrical acceptance for $dp \rightarrow {}^{3}He \eta$

For excess
energies up to
10 MeV:
detector
acceptance
≈100 %
No acceptance
corrections
needed

Angular acceptance for $dp \rightarrow {}^{3}He \eta$

- Grey: phase space generated events
- Red: accepted events

ANKE is the perfect facility for the required $dp \rightarrow {}^{3}He \eta$ measurement

- · High Acceptance, high statistics
- No systematical uncertainty induced by acceptance estimations for near threshold measurements
- No acceptance gaps in $cos(\theta)$ even for 60 MeV excess energy
- Motivation for a proposal at ANKE

ANKE-Proposal 137 (PAC April 04)

- · Request for two weeks of beamtime
 - Measurements at excess energies of 1, 2, 4, 6, 8, 10 MeV each one day using stochastic cooling
 - Measurement at excess energy of -5 MeV (one day) using stochastic cooling for background analysis
 - Measurement at excess energies of 15 and 30 MeV (each one day) and of 45 and 60 MeV (each two days) without stochastic cooling

PAC-Decision and realisation

- · PAC approved one "long" week (November 04)
 - · More measurements near threshold are required
- Idea: Measurement of the subthreshold and near threshold region in a continuous ramp for several days (like in ANKE-Proposal 139: dd \rightarrow ³He N π / t N π)
- · At least measurement of the reaction at three higher excess energies
- No use of stochastic cooling (due to the continuous ramp no problems with beam energy loss and beam energy smearing)

Absolute normalisation of the data

- dp-elastic scattering, available data:
 N. Katayama et al. (Nucl. Phys. A438 (1985) 685)
- · Deuteron in Fd-System (prescaled Fd-Or-Trigger)

Single track momentum spectrum for a d-beam of 2.4 GeV/c (Taken from A. Kacharava et al. Proposal 125.1)

P (GeV/c)

Thanks to all contributing to the proposal and helping to realise the experiment

- · Thanks for the support on:
 - · The theory for the proposal
 - ANKE-detector-physics
 - · Simulation and analysis software
 - · Realisation of the needed experimental setup in Nov. 04
 - · Physics with polarised deuterium beams
- · Thanks for such a nice atmosphere in our collaboration

ANKE

Thanks to the organisers of this workshop!!!