

1st QUALI-START-UP SCIENCE LECTURES 12 Sept 2017

Photochemistry and Radical Chemistry

Andreas Hofzumahaus

Forschungszentrum Jülich Institute of Energy and Climate Research: Troposphere (IEK-8)

Outline

Self-cleaning of the atmosphere

- Chemistry of OH, HO₂, and RO₂ radicals in the troposphere and the formation of secondary pollutants
- Measurement and observation of atmospheric radicals

Emission of Air Pollutants

What happens to emitted gases in the atmosphere?

transportation

biomass burning

energy production and industry

volcanoes

global fire activities

farming

Example: Carbon monoxide is emitted globally in large amounts and is toxic in high concentrations

The global emission rate of carbon monoxide (CO)

2800 Tg per year

Without removal (hypothetical):

Global CO concentrations would reach harmful levels (30 ppmv) in only 50 years

Example: Carbon monoxide is emitted globally in large amounts and is toxic in high concentrations

The global emission rate of carbon monoxide (CO)

2800 Tg per year

The global CO concentration is nearly constant over time **50 - 100 ppbv**

How is CO removed from the atmosphere ?

Physical Removal from the Atmosphere

• Wet deposition (washout by rain)

Water soluble components

• Dry deposition (on vegetation, soil, ground...) Sticky or reactive components

Inefficient for many emitted trace gases CO, NOx, CH₄, Isoprene, other VOCs, CFCs ...

Chemical Removal from the Atmosphere

- Large excess of oxygen (21% O₂)
- Thermodynamics favours **atmospheric oxidation**

Self Cleaning the Atmosphere by Hydroxyl Radicals (OH)

First proposed by H. Levy II, 1972

 Ozone, water vapour and solar UV produce atmospheric OH

$$O_3 + hv (<340nm) \rightarrow O(^1D) + O_2$$

 $O(^1D) + H_2O \rightarrow OH + OH$

Self Cleaning the Atmosphere by OH

 OH reacts with most trace gases and initiates their chemical degradation

Self Cleaning the Atmosphere by OH

 The reaction with OH is the rate-determining step in the removal of atmospheric trace gases.

Atmospheric Lifetimes

Gas	Atmospheric lifetime	Transport distance within lifetime
NO ₂	1 day	few hundred km
CO	2 months	global hemisphere
CH ₄	8 years	global
CFC-11*	60 years	global
CFC-12 *	130 years	global

Global mean OH concentration ~ 10^6 molecules / cm³

* Not attacked by OH

Removal of Trace Gases by OH

Trace Gas	Global Emission (Million tons per year)	Removal by OH Radicals (%)	-
со	2800	85	
CH₄	530	90	
Alkanes	20	90	
lsoprene	570	90	
Terpenes	140	50	Additional removal,
NO ₂	150	50	e.g. by NO_3 , O_3 ,
SO ₂	300	30	Criegee radicals
$(CH_3)_2S$	30	90	
CFCI ₃	0.3	0	after Ehhalt (1999)

Self Cleaning of the Atmosphere

If we want to understand atmospheric self-cleaning and secondary pollutant formation, we need to understand atmospheric radical chemistry !

Primary Formation of OH Radicals

Photodissociation of trace gases

HONO + hv (<400nm) \rightarrow OH NO ÷ Nitrous acid Surface reactions of NO₂, HNO₃, nitrates on soil, organic material, continental teflon, quartz, ... (often enhanced by light)

Secondary Formation of OH Radicals

 OH production by recycling from HO₂ radicals hydroperoxy radicals

Enhancement of the atmospheric oxidation efficiency by chain reactions

Simplified Chemistry Scheme

Secondary Formation of OH Radicals

OH regeneration in methane oxidation

 CH_3 = methyl radical CH_3O_2 = methyl peroxy radical CH_3O = methoxy radical

Photochemical Ozone Formation

Radical Destruction

• Chain termination by radical self-reactions

OH	+ NO ₂ + M	\rightarrow	$HNO_3 + M$
HO ₂	+ HO ₂	\rightarrow	$H_2O_2 + O_2$
CH ₃ O ₂	+ HO ₂	\rightarrow	$CH_3OOH + O_2$

nitric acid hydrogen peroxide

methyl peroxide

OH Concentration and Ozone Production

Atmospheric Measurements of Radicals

How well do observations agree with theory ?

Laser Induced Fluorescence (LIF)

pump

• Calibration with radical source:

 $H_2O + hv (185 nm) \longrightarrow OH + H$ $H + O_2 + M \longrightarrow HO_2 + M$

LIF Instrument

Deployment of Laser Induced Fluorescence (LIF) for OH and HO₂ Measurements

OH Measurement by LIF in a Clean Atmosphere (North-East Germany)

Holland et al. (1998)

OH observations in regions with low VOC concentrations

OH observations in regions with high VOC concentrations

Field campaigns ($k_{OH} > 10 \text{ s}^{-1}$)

- A Lelieveld et al. 2008
- B Whalley et al. 2011
- C Tan et al. 2001
- D Hofzumahaus et al. 2009
- E Lu et al. 2013
- F1 Mao et al. 2009
- F2 Dusanter et al. 2009
- G Kanaya et al. 2007
- H Ren et al. 2003
- I Mao et al. 2012

OH is significantly underpredicted at NO < 0.5 ppbv in biogenically influenced regions (e.g. forests)

Rohrer et al. Nature Geosci. 2014

Experiments in the atmosphere simulation chamber SAPHIR

Chamber

- Volume: 270 m³
- Walls: Teflon film
- Light source: Solar radiation

Measurements

- OH, HO₂, RO₂, O₃, H₂O, CO, NO, NO₂, HONO, CH₄, VOCs
- Solar radiation, T, p

Summary

Progress in understanding through field campaigns, laboratory + chamber experiments, theoretical calculations, and modelling

- OH radicals control the atmospheric self-cleaning.
- OH chemistry is relatively well understood in clean air
- OH chemistry is not well understood in environments with high VOC concentrations affecting:
 - atmospheric self-cleaning
 - photochemical production of ozone
 - formation of secondary organic aerosols