

Autumn Lectures / Tbilisi / 2013

Laser-induced particle acceleration

22 October 2013 | Markus Büscher

Magnetic fields

Electric fields \rightarrow change particle energies \rightarrow acceleration

Magnetic fields \rightarrow ?

Spin / magnetic fields

Charged spinning particle \rightarrow magnetic moment μ

 μ can be manipulated by <u>magnetic fields</u>

Strong magnetic fields (simulation)

Spin alignment in magnetic fields

low

energy

Bar magnet magnetic moment

Proton spin magnetic moment g = 2.79 $\mu_N = 3.15 \times 10^{-8} eV/T$

Ν

 $\mu = g_{\rm p} \mu_N$

high

Stern-Gerlach effect

Stern-Gerlach effect ... revisited

Stern-Gerlach effect for <u>charged</u> particles (e^- , p, ...)?

Niels Bohr and Wolfgang Pauli during the Copenhagen conference April 1929 (Niels Bohr Archive, Copenhagen)

"Does a flying electron spin?"

see e.g.: B.M.Garraway and S.Stenholm, Contemporary Physics 43, p.147 (2002)

Markus Büscher

Polarization of a particle beam

1 particle \rightarrow 1 spin direction

Ensemble of particles

disordered spins no polarization *P* = 0

all spins show into same direction fully polarized beam P = 1 = 100%

Markus Büscher

Polarization P $P = \frac{N^{up} - N^{down}}{N^{up} - N^{down}}$ $N^{up} + N^{down}$

N = occupation number of up/down state

How to measure polarization

Nuclear scattering with known analyzing powers

Scattering of a polarized beam

Simplest case: beam particle with spin 1/2 on unpolarized target

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E,\vartheta,\varphi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}_{\mathrm{unpol}} (E,\vartheta) [1 + A \cdot P \cdot \cos\varphi]$$

Analyzing power	Beam polarization
A(<i>E</i> , <i>θ</i> , target, …) −1 ≤ A ≤ +1	<i>P</i> −1 ≤ <i>P</i> ≤ 1

Scattering of a polarized beam (2)

B.Becker, Universität zu Köln (1994)

Proton acceleration → **Foil targets**

Experiment at ARCturus / Düsseldorf Univ.

Gold foil typical thickness 3 µm

Particle detection

bunches of many particles, extremly high particle rates

use detectors without dead time

photofilms: calibrated, usable only once

image plates: usable several times not calibrated

CR-39: usable only once insensitive to xrays and photons etching with NaOH and scanning reveals crates produced by particles

none of the detectors can be read out online

22 October 2013

Particle detection (2)

Faraday cups (here: array of 8)

Readout online

Measures collected charge

Good time resolution

Time stability (here: electron beams)

Measured with LANEX screen

40 fs 23 bar He

Proton energy spectrum

Polarization measurement: setup

Polarization measurement: setup

Proton scattering in Si target

Markus Büscher

Scattering-angle distribution

Si(p, p')Si, $T_p = (3.2\pm0.2)$ MeV

Data analysis: N.Raab, Ph.D. thesis, Univ. zu Köln (Jan. 2011)

Proton polarization: angular distribution

Laser incidence angle: $\Phi = 90^{\circ}, \Theta = 45^{\circ}$

Proton emission angle: $\Phi = 180^{\circ}, \Theta = 8^{\circ}$

Relative to production target normal

Proton polarization: first result

 \rightarrow no polarization build-up

Polarized beams from laser plasmas: possible scenarios

1) Polarization is generated

Laser-acceleration process polarizes particles from unpolarized targets (plasmas) due to large magnetic fields and/or gradients

 \rightarrow foil targets

2) Polarization is preserved

Spin direction is invariant in strong laser & plasma fields

 \rightarrow polarized ³He gas

Scenario #2: Polarized ³He

Stable (days) nuclear polarization @ room temperature Available from Univ. Mainz

Production

Transport

Polarized ³He: Applications

MRI of the lung

¹H-MRI of the chest. The black area is the lung, which hardly gives a signal.

Lung after inhalation of HP-³He. Now only the lung is visible.

Polarized ³He: Applications

Healthy

COPD patient

http://www.airprom.european-lung-foundation.org/16590-results.htm

Polarized ³He: Magnetic holding fields

Halbach array of permanent magnets Homogeneous field at target location

Markus Büscher

Polarized ³He: Ion acceleration in <u>gas</u> target

Data: ARCturus / Düsseldorf Univ. / Jan. 2013 Measured with Faraday cup

CPA: Pulse shape

ARCturus / Düsseldorf Univ.

