

INTERACTION of PARTICLES and RADIATION with MATTER

Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich

"Quali-Start-Up Lectures 2017" *FZ Jülich, IKP* September 11, 2017

- INTRODUCTION
- PLAYGROUND
- HOW TO DETECT ?
- RADIATION
- MASSIVE PARTICLES

INTRODUCTION

PLAYERS in the SUB-ATOMIC WORLD

PARTICLES

What characterizes a particle?

PARTICLES in 1932

PARTICLES

new particles – unstable being free

		pions		kaons	many more
		π		κ	
Q		0, ± 1		2 × 0 , ± 1	
Μ		$\approx M_p / 7$		≈ M _p / 2	
S		0		0	0 , $1/_2$, 1 , $3/_2$, 2 ,
size		0.6 · 10 ^{−15} m		0.6 · 10 ^{−15} m	
life time τ_0	π^{\pm}	26 ⋅10 ⁻⁹ s	\mathbf{K}^{\pm}	12 ⋅10 ⁻⁹ s	
	π^0	8 ⋅10 ⁻¹⁷ s	$\mathbf{K}^{0}_{\mathrm{S,L}}$	9 ·10 ⁻¹⁰ / 5 ·10 ⁻⁸ s	
decav		$\pi^{\pm} \rightarrow \mu^{\pm} \nu$		$K^{\pm} \rightarrow \mu^{\pm} \nu$	
		$\pi^0 \rightarrow \gamma \gamma$		$K^0 \rightarrow \pi^+ \pi^-, \pi^0 \pi^0, \dots$	

PLAYERS II: WAVES

fundamental constant: $c = speed of light in vacuum (\cong 30 cm / ns)$

ELECTROMAGNETIC RADIATION

The Electromagnetic Spectrum

wave length λ frequencyv

S = 1

wave p	propagation	velocity	in vacuum	$c = \lambda v$
"	"	"	in medium	$c' = \lambda' \nu < c$
index of	of refraction	ı		$n = c/c^{\prime}$

quantum mechanics: waves can be particles

Photon

$$m = \pm 1, no m = 0$$

having energy $E = h\nu = \frac{hc}{\lambda}$

(Einstein 1905)

COMPARISON

		massiv	e particles		elmag. radiation					
total	energy	$\mathbf{E}_{\text{total}} = \sqrt{\mathbf{p}}$ $= \gamma \mathbf{n}$ $\mathbf{T}_{\text{kin}} = \mathbf{E}_{\text{tot}}$	$\mathbf{p}^{2}\mathbf{c}^{2} + \mathbf{m}_{0}^{2}\mathbf{c}^{4}$ $\mathbf{n}_{0}\mathbf{c}^{2}$ $\mathbf{m}_{0}\mathbf{c}^{2}$		$\mathbf{E}_{\text{total}} = \mathbf{pc}$ $= \mathbf{hv}$ $= \hbar \boldsymbol{\omega}$	h Planck co h = minima	onstant laction $\left(\hbar = \frac{h}{2\pi}\right)$			
rest	mass	m ₀ ≠ 0	range in matter	r	= 0	attenuation	n matter			
char	ge	Q ≠0	deflection in el.	-mag fields	= 0	no deflection				
life ti	me	$\tau=\gamma\tau_0$	decay length l	= ν τ	= ∞					
	relativistic a	factor	$\gamma = \frac{1}{\sqrt{1-\beta^2}},$	$\beta = \frac{v}{c}$	limγ —	$\rightarrow c \sim \infty$				

PLAYGROUND

by means of "normal" matter

ATOMS and NUCLEI I

Each substance is composed of chemical $\underline{elements} \equiv \underline{basic set of atoms}$ (Dalton, ...)

 $1 Mol Na + 1 Mol Cl \rightarrow 1 Mol NaCl$

1 Mol contains always the same number of particles $N_A = 6 \cdot 10^{23}$

The ratios of molar masses of the elements are almost ratios of integer numbers.

Atomic mass unit (a.m.u.)

1 a.m.u. =
$$\frac{\mathbf{m}({}^{12}\mathbf{C} \operatorname{atom})}{12} = \frac{12 \,\mathbf{g}}{12 \cdot \mathbf{N}_{\mathbf{A}}} = 1.66 \,10^{-27} \,\mathrm{kg}$$

Periodic system of elements

Mendelejev: Ordering scheme according to chemical properties

Η		_															He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AL	Si	Ρ	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Мn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y.	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Τ	Xe
Cs	Ba		Hf	Ta	W	Re	0s	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
			Ca	D-	Ma	Dee	Cm	E	C d	ТЬ	D	Цa	E.			1	
		La	ce	Pr	NO	РM	Sm	CU	Gū	10	υy	по	сr	1 m	TD	LU	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

ATOMS and NUCLEI II

Discovery of the electron (J.J. Thomson 1897)

Interpretation of the rays accompanying gas discharges: Kathode rays: Electrons (negatively charged and light) Channel rays: lons (positively charged and heavy)

Discovery of the atomic nucleus (Geiger & Rutherford 1911)

Almost the full mass of an atom of diameter ~ 10^{-10} m is concentrated in a tiny volume of radius ~ 10^{-15} m

Proof: Collision kinematics – backscattering only from heavy collsion partners

 $\Rightarrow \text{ total atom is electrical neutral: Atomic nucleus - electric charge } + Z q_e Z_{\text{positive integer}}$ Atomic shell - electric charge - Z q_e

ATOMS and NUCLEI III

Bohr-Sommerfeld model of atoms

main quantum number n = 1, 2, ...

"main shell"

angular momentum

ℓ = 0, ..., n-1

"sub-shell"

magnetic quantum number $m = -\ell, -\ell+1, ..., \ell-1, \ell$

 $(2\ell +1)$ possible orientations of angular momentum vector in external field

intrinsic electron spin $S = \frac{1}{2}$

intrinsic angular momentum

2 possible orientations of spin vector in external field $S = \pm \frac{1}{2}$

total spin:
$$\vec{j} = \vec{\ell} + \vec{S}$$
 $|\vec{j}| = \frac{1}{2}, 1, \frac{3}{2}, ...$

 ℓ and S are measured in units \hbar

main shells for Z = 1 (H)

ATOMS and NUCLEI IV

$S = \frac{1}{2}$ particles are called *fermions*

Pauli principle:

Only one fermion is allowed in a particular quantum state: For atoms = (n, ℓ, m, S)

 \Rightarrow maximum no. of electrons per sub-shell: $2 \cdot (2\ell + 1)$

Periodic system of elements

$A(Z,N) + Ze^{-}$

Mendelejev: Ordering scheme according to chemical properties

H Li Na	Be Mg											B Al	C Si	N P	0 S	F Cl	He Ne Ar	outmost incomplete
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	shell
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe	Jatannin an
Cs	Ba		Hf	Ta	W	Re	0s	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	aetermines
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt										chemistry
		La Ac	Ce Th	Pr Pa	Nd U	Pm Np	Sm Pu	Eu Am	Gd Cm	Tb Bk	Dy Cf	Ho Es	Er Fm	Tm Md	Yb No	Lu Lr		

FORCES

• gravitation

strength

keeps us on the ground

Folie 16

HOW TO DETECT ?

"via" electric force !

SIGNAL CREATION

• access via electric charges

produced in elementary processes with atoms and nuclei

EL.-MAG. INTERACTION I - ELECTRIC FORCE

the force is mediated in the

classical picture

quantum world

by field around a source

field quanta = ",virtual" particles

"light" particles = photons \gamma

electromagnetic radiation = E and B fields interact with electric charges

EL.-MAG. INTERACTION II - CHARGES in EL.-MAG. FIELDS

• electric field

 $\vec{\mathbf{F}} = \mathbf{m}\vec{\ddot{\mathbf{x}}} = \mathbf{Q}\cdot\vec{\mathbf{E}}$

magnetic field

$$\vec{\mathbf{F}} = \mathbf{m}\vec{\ddot{\mathbf{x}}} = \mathbf{Q}\cdot\left(\vec{\mathbf{v}}\times\vec{\mathbf{B}}\right)$$

- B = →
 - B = const.
 - \Rightarrow circular motion
 - B⊥ plane of projection

S

$$\omega = \frac{Q}{M}B \qquad \omega = \frac{2\pi}{T}$$

$$mv^{2} / r = Q \cdot v \cdot B$$
$$p = Q \cdot B \cdot r$$

INTERACTION OF

ELECTRO – MAGNETIC RADIATION

SCATTERING EXCITATION - SCINTILLATORS produce "LIGHT" **PHOTO EFFECT COMPTON EFFECT** PAIR PRODUCTION **BREMSSTRAHLUNG & EL.-MAG. SHOWER ATTENUATION**

THOMSON SCATTERING

elastic scattering of el.-mag. waves at a <u>free</u> charges = electron, ...

independent of wave length λ

 $\sigma_{Th} = \frac{8\pi}{3} \cdot r_e^2$ $\cong \frac{2}{3} barn$

$$\sigma_{Th,atom} = \mathbf{Z} \cdot \sigma_{Th}$$

deviates from experiment

$$r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$$
$$= \alpha \cdot \frac{\hbar c}{m_e c^2}$$
$$= 2.82 \cdot 10^{-15} m$$

application: plasma diagnosis, polarization of CMB, ...

RAYLEIGH SCATTERING

elastic scattering of el.-mag. waves at polarisable scattering centers = atoms, molecules

damped oscillation of "elastically" <u>bound</u> electrons eigen frequency ω_0 of bound system

application: combustion diagnosis, holidays, ...

$$\boldsymbol{\sigma}_{R} = \boldsymbol{\sigma}_{Th} \cdot \frac{\boldsymbol{\omega}^{4}}{(\boldsymbol{\omega}^{2} - \boldsymbol{\omega}_{0}^{2})^{2}} \cdot \boldsymbol{Z}^{2}$$

$\omega \ll \omega_0$ makes the sky blue / sunset red

COHERENT SCATTERING - BRAGG'S LAW

EXCITATION - SCINTILLATORS produce "LIGHT"

ionisation caused by

⇒ charged particles or light excitation and delayed light emission usually in the UV range

scintillators	0
inorganic	Nal(TI), CsI, BaF ₂ ,
organic	doped "plastics"

UV light is converted to charge at a photo cathode ③ and multiplied by a multi stage (dynodes) photo "multiplier"

EXCITATION - RESPONSE of EYE CELLS

cis – trans transition

of various opsin (protein) molecules

PHOTO EFFECT

requires particle nature of "light" Einstein 1905

- 1. photon disappears photo electron $E_e = E_{photon} - E_B$
- 2. refilling of hole in electron shell by

 a) emission of photon or
 b) Auger electron emission of
 loosely bound outer electron
 E_{Auger} ≅ E_B

detected energyEphoto peak $E = E_{photon}$ $= E_e + E_B$ escape peak $E = E_{photon} - E_{K\alpha}$

COMPTON EFFECT

proof of particle nature of "light" Compton 1922

billard with photons and "quasifree" electrons

$$\sigma_{C} \approx \sigma_{Th} \cdot (1 - 2\epsilon\gamma + \cdots) \cdot Z \qquad \epsilon_{\gamma} \ll 1$$

 $\approx \sigma_{Th} \cdot \frac{3}{4} \cdot \left(\frac{1 + 2ln\epsilon\gamma}{2\epsilon\gamma} + \cdots\right) \cdot Z \quad \epsilon_{\gamma} \gg 1$
complicated QED calculation Klein&Nishina 1929

PAIR PRODUCTION

proof of mass-energy equivalence Blackett 1948

$$\sigma_{pair} \approx \sigma_{Th} \cdot \mathbf{Z}^2 \cdot (ln 2\varepsilon \gamma + \cdots) \ \varepsilon_{\gamma} \gg 1$$

conversion of energy into matter

 $E_{photon} = hv > 2 m_{electron,muon,pion, ...}$ a recoil partner (e.g. a nucleus) is needed $to fulfil energy and momentum conservation
<math display="block">e^+e^- \text{ threshold: } m_{recoil} = \infty \quad hv = 2 m_e c^2$ $= m_e = 4 m_e c^2$

el.-mag. shower

e⁺ e⁻ γ - cascade pair production and bremsstrahlung alternate shower may start with photon <u>or</u> electron

radiation length X₀

characteristic material dependent constant depth, where about 2/3 (1/e) of the incident energy is converted

BREMSSTRAHLUNG

accelerated charged particles radiate Hertz 1886

electromagnetic waves

$$\sigma_b \approx \sigma_{Th} \cdot \mathbf{Z}^2 \cdot [energy \, dependent]$$

bending force by Coulomb potential

force ⇔ acceleration

$$F_{\text{Coulomb}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\text{Qparticle} \cdot \text{Qnucleus}}{r^2}$$
$$= \mathbf{m} \cdot \ddot{\mathbf{r}}$$

any distance r

⇒ continuous spectrum

EL.-MAG. SHOWER

alternating pair production & bremsstrahlung

initial particle of minor importance for large energies

radiation length X₀

characteristic quantity of *absorber*

$$\boldsymbol{E}_{\gamma} = \boldsymbol{E}_{initial} \cdot \boldsymbol{e}^{-(\boldsymbol{X}_{\gamma})}$$

x

CROSS SECTIONS SUMMARY

ATTENUATION

INTERACTION OF

MASSIVE PARTICLES

CHARGED PARTICLES : ENERGY LOSS BY IONIZATION

HEAVY CHARGED PARTICLES

LIGHT CHARGED PARTICLES

CHARGED PARTICLES : ENERGY LOSS BY RADIATION

NEUTRONS

CHARGED PARTICLES

interaction happens by collisions of particles type 1 and 2

before

after collision

2.
$$M_{\text{particle 1}} = M_{\text{particle 2}}$$

CHARGED PARTICLES - ENERGY LOSS by IONIZATION

collisions create electron- ion pairs Bragg peak Protons 1. heavy M_{particle} >> M_{electron} Bragg Relative Dose $\frac{\Delta R}{R} = 1 - 3\%$ e.g. protons, deuterons, ... for all elements Depth strongly ionising well defined range R! 2. light $M_{particle} = M_{electron}$ $N(x) \propto e^{-\mu x}$ (0)N / (x)N electrons or positrons no defined range R! Θ igodol Θ \bigcirc 0 Θ x \bigoplus exponential attenuation with depth x weakly ionising µ: material dependent attenuation coefficient

INTERACTION OF

HEAVY CHARGED PARTICLES

WITH MATTER

HEAVY CHARGED PARTICLES - STOPPING POWER I

heavy particles μ , π , K, p, d, ...

HEAVY CHARGED PARTICLES - STOPPING POWER II

Bethe-Bloch range

HEAVY CHARGED PARTICLES - STOPPING POWER III

Figure 30.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher-Z absorbers. See Fig. 30.23.

from C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016).

HEAVY CHARGED PARTICLES - STOPPING POWER IV

HEAVY CHARGED PARTICLES - BARKAS EFFECT

frictional cooling (e-cooler, muon collider), window design, ...

HEAVY CHARGED PARTICLES - STRAGGLING

<u>energy</u> (loss) straggling Δ

Landau-Vavilov distribution

asymmetric energy straggling towards higher Δ

thick layers \rightarrow many collisions \rightarrow skewness decreases

 Δ_p / x most probable energy loss (here normalized to unity)

 Δ / x energy loss per layer thickness

 $\overline{\Delta}^2 \propto \frac{Z}{A} \cdot \rho \cdot d \cdot \frac{1}{\beta^2} \qquad \text{for ,,thin" layers}$

from <u>C. Patrignani *et al.*</u> (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016).

<u>angular</u> straggling $\overline{\Theta}$

Absorber

$$\overline{\Theta} = \frac{13.6 MeV}{\beta cp} \sqrt{x / X_0} (1 + ...) \propto z \cdot Z / p^2$$

 $\begin{array}{ll} \textit{many collisions} \rightarrow \textit{Gaussian angular distribution} \\ \mathbf{X}_0 / \textit{gcm}^{-2} &= 63~(126) \quad \mathbf{H}_2(\mathbf{D}_2) \quad \textit{radiation length} \\ &= 108 \qquad \mathbf{Si} \\ &= 13.8 \qquad \mathbf{Fe} \end{array}$

x / gcm⁻² effective thickness of layer (x = $d \cdot \rho$)

- acceptance of experimental setup (storage rings etc.)
- position resolution of tracking devices

HEAVY CHARGED PARTICLES - RANGE I

Fig. 4. Proton and carbon ion tracks are compared microscopically to an illustration of a DNA molecule before, in and behind the Bragg maximum, for the same energy [41].

Biochimica et Biophysica Acta 1796 (2009) 216-229

HEAVY CHARGED PARTICLES - RANGE II

mean range depends on particle mass $R = \int dE / (dE/dx)$ [cm] T_{kin}

ΔR range – straggling $\Delta R/R \approx 1\% - 3\%$ for all elements longitudinal $\approx 2\% - 6\%$ transversal

Carbon

47 MeV antiprotons radiochromic film response

N. Bassler et al. Radiotherapy and Oncology 86 (2008) 14-19

20 keV protons on carbon (Monte-Carlo simulation SRIM)

A.Csete / PhD thesis, Aarhus, 2002

INTERACTION OF

LIGHT CHARGED PARTICLES

WITH MATTER

Folie 48

LIGHT CHARGED PARTICLES - STOPPING POWER

radiation dominated energy range

energy loss by bremsstrahlung $-\frac{dE_{kin}}{dx} \propto Z^2_{target} \cdot E_{kin} \cdot [...]$ $\Rightarrow E_{kin} = E_{0,kin} \cdot e^{-(x/X_0)}$ radiation length X_0 [g·cm⁻²] $\frac{1}{X_0} = 4 \alpha \cdot r_e^2 \cdot \frac{N_A}{A} \cdot Z^2_{target} \cdot [...]_0$

after depth $d = X_0 / \rho$ ([cm]) all but 1/e of the energy of the particle is lost by bremsstrahlung

LIGHT CHARGED PARTICLES - RANGE

ionisation dominated energy range

electron range (semiempirical formulae)

	R	=	0,52 E ^(MeV) - 0,09	(g cm ⁻²)	0,5 <	E _e < 3 MeV
	R	=	0,412 E ⁿ	(g cm ⁻²)	0,01 <	E _€ < 3 MeV
	mi	t	n = 1,265 - 0,0954	low Ee		
	R	=	0,53 E ^(MeV) - 0,106	(g cm ⁻²)	1 4	Ee< 20 MeV
-	dE dæ	=	$\frac{2 \overline{u} e^4}{E_e} N^6 Z (ln)$	$\frac{E_{e}}{I}$ + 0,15)	E _e 44	m _e c ²
-	dE dæ	=	$\frac{2\pi e^4}{m_e c^2}$ N ^e Z (ln	$\frac{E_{e}^{3}}{2m_{e}c_{I}^{2}} + \frac{1}{8})$	E _e ≫	mec ²

radiation dominated energy range

radiation length X₀ [g·cm⁻²]

D_2	126	mylar 40	
H_2^-	63	air 37	
AĪ	24	water 36	
Ar	20	rock standard 27	
Cu	13	Csl 8.4	1
Pb	6	PbWO₄ 7.4	1

CHARGED PARTICLES - ENERGY LOSS BY RADIATION I

<u>Čerenkov</u> radiation if $v_{particle} > c_{in medium}$

Čerenkov 1930s

"light" blue!

ST 2

electrons "radiate" in the water above the core of a nuclear power plant

the charge polarizes the medium

emission under specific angle $\Theta_{\check{C}}$

 $\cos \Theta_{\check{C}} = 1 / \beta \cdot n$ $n = index \ of \ refraction$ (small) dispersion !

$\Theta_{\check{C}}$ measures the velocity of the particle

acoustics analogue: Mach's cone for supersonic source

CHARGED PARTICLES - ENERGY LOSS BY RADIATION II

<u>Transition</u> radiation for ultrarelativistic particles ($\gamma >> 1$)

Ginzburg & Frank 1946

Readjustment of the el.-mag. fields (E,H) at the boundary of 2 media

with different dielectric properties (ϵ)

leads as collective response of the material to emission of el.-mag. radiation (X-rays)

typical: soft X-rays of 2 - 40 keV for $\gamma \approx 1000$

application: plasma frequencies of materials, particle separation (π/p), ...

LIGHT CHARGED PARTICLES - RELATIVE ENERGY LOSS

Fractional energy loss per radiation length in lead as a function of electron or positron energy.

INTERACTION OF

MASSIVE NEUTRAL PARTICLES

WITH MATTER

NEUTRONS I

collisions create recoil particles

maximum energy transfer for $M_{neutral} = M_{recoil}$

central collisionenergy is transferred completelynon centralall energies according to scattering angleaverge energy transfer50%

detection by recoil protons (from hydrogen)

$$M_{proton} \approx M_{neutron}$$

i.e. good shielding is water - H₂O concrete - 15% water paraffin - (CH)_n

...

cloud chamber picture

neutron

NEUTRONS II

neutrons – no defined range

$$T_n \approx \frac{1}{40} eV$$

subsequent capture or decay

don't forget absorber for reaction and decay products (mostly γ)

SYNOPSIS:

BASIC INTERACTIONS ARE

BASIS FOR DETECTOR DESIGN