Lecture B3

INTERACTION of PARTICLES with MATTER

Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln

"Autumn Lectures" – Nuclear and Medical Physics *Tbilisi, Georgian Technical University (GTU)* October 18, 2013

CHARGED PARTICLES : ENERGY LOSS BY IONIZATION

HEAVY CHARGED PARTICLES

LIGHT CHARGED PARTICLES

CHARGED PARTICLES : ENERGY LOSS BY RADIATION

NEUTRONS

PARTICLES - HEAVY or LIGHT

interaction happens by collisions of particles type 1 and 2

before

after collision

2.
$$M_{\text{particle 1}} = M_{\text{particle 2}}$$

CHARGED PARTICLES - ENERGY LOSS BY IONIZATION

collisions create electron- ion pairs Bragg peak Protons 1. heavy M_{particle} >> M_{electron} Bragg Relative Dose e.g. protons, deuterons, ... Depth strongly ionising well defined range R! 2. light $M_{particle} = M_{electron}$ $N(x) \propto e^{-\mu x}$ (0)N / (x)N electrons or positrons no defined range R! Θ \bigcirc Θ \bigoplus 0 Θ x \bigoplus exponential attenuation with depth x weakly ionising *µ: material dependent attenuation coefficient*

HEAVY CHARGED PARTICLES - STOPPING POWER I

heavy particles μ , π , K, p, d, ...

HEAVY CHARGED PARTICLES - STOPPING POWER I

Bethe-Bloch range

Folie 6

HEAVY CHARGED PARTICLES - STOPPING POWER II

Figure 30.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher-Z absorbers. See Fig. 30.23.

HEAVY CHARGED PARTICLES - STOPPING POWER III

HEAVY CHARGED PARTICLES - BARKAS EFFECT

frictional cooling (e-cooler, muon collider), window design, ...

HEAVY CHARGED PARTICLES : STRAGGLING

energy straggling

Landau-Vavilov distribution

asymmetric energy straggling towards higher ΔE

thick layers \rightarrow many collisions \rightarrow skewness decreases

- Δ_p / x most probable energy loss (here normalized to unity)
- Δ/x energy loss per layer thickness

Absorber

$$\overline{\Theta} = \frac{13.6 MeV}{\beta cp} \sqrt{x / X_0} (1 + ...) \propto z \cdot Z / p^2$$

many collisions \rightarrow Gaussian angular distribution

$$X_0/gcm^{-2} = 63 (126) H_2(D_2)$$

= 108 Si
= 13.8 Fe

acceptance of experimental setup (storage rings etc.) position resolution of tracking devices

HEAVY CHARGED PARTICLES : RANGE I

12**C**

Carbon lons in H₂O

protons

0.2 MeV/u

Protons in H₂O

20

Fig. 1. Depth dose distribution for photons and monoenergetic Bragg curves for carbon ions and protons (Courtesy of G. Kraft, GSI Darmstadt, Germany).

Fig. 4. Proton and carbon ion tracks are compared microscopically to an illustration of a DNA molecule before, in and behind the Bragg maximum, for the same energy [41].

Biochimica et Biophysica Acta 1796 (2009) 216-229

HEAVY CHARGED PARTICLES : RANGE II

mean range depends on particle mass 0 R = ∫ dE / (dE/dx) [cm] T_{kin}

range - straggling ΔR longitudinal $\Delta R/R \approx 1\% - 3\%$ for all elementstransversal $\approx 2\% - 6\%$

Carbon

47 MeV antiprotons radiochromic film response

N. Bassler et al. Radiotherapy and Oncology 86 (2008) 14–19

20 keV protons on carbon (Monte-Carlo simulation SRIM)

A.Csete / PhD thesis, Aarhus, 2002

R/M(E/M)
range concept useful for
- radiation losses small

LIGHT CHARGED PARTICLES : STOPPING POWER

radiation dominated energy range

energy loss by bremsstrahlung $-\frac{dE_{kin}}{dx} \propto Z^2_{target} \cdot E_{kin} \cdot [...]$ $\Rightarrow E_{kin} = E_{0,kin} \cdot e^{-(x/X_0)}$ radiation length X_0 [g·cm²] $\frac{1}{X_0} = 4\alpha \cdot r_e^2 \cdot \frac{N_A}{A} \cdot Z^2_{target} \cdot [...]$

after depth $\rho \cdot X_0$ ([cm]) all but 1/e of the energy of the particle is lost by bremsstrahlung

LIGHT CHARGED PARTICLES : RANGE

ionisation dominated energy range

electron range (semiempirical formulae)

R	. =	0,52 E ^(MeV) - 0,09	(g cm ⁻²)	0,5 <	E _e < 3 MeV
R	. =	0,412 E ⁿ	(g cm ⁻²)	0,01 <	E _€ ≤ 3 MeV
n	nit	n = 1,265 - 0,0954	low Ee		
R	. =	0,53 E ^(MeV) - 0,106	(g cm ⁻²)	1 4	E _e < 20 MeV
- dE dæ	=	$\frac{2 \pi e^4}{E_e} N^6 Z (ln)$	$\frac{E_{e}}{I}$ + 0,15)	E _e «	m _e c ²
dE dæ	=	$\frac{2\pi e^4}{m_e c^2}$ N ^e Z (ln	$\frac{E_{e}^{3}}{2m_{e}c^{2}I^{2}} + \frac{1}{8})$	E _e ≫	mec ²

radiation dominated energy range

radiation length X₀ [g·cm²]

D_2	126	mylar	40
H_2	63	air	37
Ā	24	water	36
Ar	20	rock standard	27
Cu	13	Csl	8.4
Pb	6	PbWO ₄	7.4

LIGHT CHARGED PARTICLES : RELATIVE ENERGY LOSS

Fractional energy loss per radiation length in lead as a function of electron or positron energy.

CHARGED PARTICLES: ENERY LOSS BY RADIATION I

<u>Cerenkov</u> radiation if V_{particle} > C_{in medium}

Cerenkov 1930s

"light" blue!

electrons "radiate" in the water above the core of a nuclear power plant

the charge polarizes the medium

emission under specific angle Θ_{C}

 $\cos \Theta_{c} = 1 / \beta \cdot n$ $n = index \ of \ refraction$ (small) dispersion !

Θ_{c} measures the velocity of the particle

acoustics analogue: Mach's cone for supersonic source

CHARGED PARTICLES: ENERY LOSS BY RADIATION II

<u>Transition</u> radiation for ultrarelativistic particles ($\gamma >> 1$)

Ginzburg & Frank 1946

Readjustment of the el.-mag fields (E,H) at the boundary of 2 media

with different dielectric properties (ϵ)

leads as <u>collective response of the material</u> to emission of el.-mag radiation (X-rays)

typical: soft X-rays of 2-40 keV for $\gamma \approx 1000$

application: plasma frequencies of materials, particle separation (π/p), ...

NEUTRONS I

collisions create recoil particles

maximum energy transfer for $M_{neutral} = M_{recoil}$

central collisionenergy is thenon centralall energiesaverge energy transfer50%

energy is transferred completely all energies according to scattering angle 50%

detection by recoil protons (from hydrogen)

...

 $M_{Proton} \approx M_{Neutron}$

i.e. good shieldings are water

concrete (15% water) paraffin ((CH)_n) cloud chamber picture

neutron

NEUTRONS II

neutrons – no defined range

$$T_n \approx \frac{1}{40} eV$$

subsequent capture or decay

don't forget absorber for reaction and decay products (mostly γ)