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Outline
 Introduction

 Qualitative issues of diffusion.
 Spins diffusing under a background gradient.

 Bipolar gradient-echo sequence.
 Stejkal-Tanner spin-echo sequence.

 Approaches to the problem
 Microscopic approach. Quantum mechanical treatment.

 The diffusion propagator.
 Solution for the Stejskal-Tanner experiment.

 Macroscopic approach. The Bloch-Torrey equation.
 Solution for the bipolar gradient-echo.
 Solution for the Stejkal Tanner equation.

 Diffusion in biological tissue. Hindered diffusion.
 The ADC approach.
 Signal attenuation.

 Anisotropic systems. The DTI approach.
 Invariant parameters. Fractional anisotropy (FA), Mean Diffusivity 

(MD), etc.
 Fibre tracking.
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• 1827 – Brown describes what is now known 
as “Brownian Motion”.

History …

Definition: diffusion is the thermal motion of all particles at 
temperatures above the absolute zero in a liquid or gas. The rate of 
this movement is a function of temperature, viscosity of the fluid and 
the size (mass) of the particles.

• 1905 – Einstein describes the statistical 
mechanics of diffusion.

Dtrr 2)0()0( 2 =−


Mean Square Displacement at the time t
(averaged over the particle ensemble). 
Can be measure with MRI.

Diffusion Coefficient. Estimated from 
MRI signal attenuation.
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Classical representation of NMR diffusion measurements

Transverse 
Magnetization

Gradient Echo
The constant magnetic field is superimposed by an 
inhomogeneous field
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Assuming no field inhomogeneities more than the caused by 
the gradient
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RF

Hahn spin-echo
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Transverse 
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Finally
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, a gradient in the z-direction and using the gaussian propagator,
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So one can estimate D by measuring changes in the signal while varying the time 
parameters or the gradient strength.

the amplitude of the signal results
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A macroscopic approach:
The Bloch-Torrey equation. 
H.C. Torrey showed in 1956 how the Bloch equations would change for an ensemble of 
spins diffusing in the presence of a magnetic field gradient.

The Bloch-Torrey equation for the evolution of the distribution of magnetization m in the 
presence of a magnetic field Bz is, 

Diffusion term

Larmor precession 0Bγω ≡

Transversal relaxation

Longitudinal relaxation
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In the absence of diffusion, m+ is exponentially damped with relaxation time T2.

One gets the next differential equation

ψψγψ
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Proposing the next solution (going to the rotating frame)

Solution for an infinite system.
Defining m+ as the circular component of the transverse spatial magnetization distribution
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Assuming D = constant, ∫∫ ⋅−=
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Solution for a Gradient Echo bipolar pulse.
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Solution for the Stejkal-Tanner pulse sequence.
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Diffusion in biological tissue.
Apparent Diffusion Coefficient (ADC) approach.

• ADC is a phenomenological parameter that incorporates integrative information on 
the tissue microstructure.
• It is insensitive to microstructure details.
• It is a very important biomarker for identifying pathologies.

Bundles of axons in the corpus 
callosum in the human brain.

Then  one needs to measure S0,  the non-diffusion-
weighted value (no gradients), and the signal for at 
least a non-zero b-value.

The usual range for the b-values is (0-1000) s/mm2. 
For grater b-values, the attenuation is not longer 
monoexponential.

For a given gradient direction, the signal 
attenuation at the echo time can be written as
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Typical diffusion signal attenuations.

Valid range for the ADC approach.

Background noise.

Diffusion is restricted, 
i.e. the initial slope is 
smaller than in the 
free-diffusion case.

Free water 
diffusion.

ADCb
S

bS
⋅−=

0

)(ln The ADC is given by the slope of the signal attenuation 
in a logarithmic scale.

ADC = 2.3*10-3 mm2/s for free water at 
24°C.
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600

Diffusion weighted imaging (DWI) in the human brain.
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DWI signal acquisition. Gradient along z-direction case.
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An application of DWI. Early detection of stroke.

http://www.radiologyassistant.nl/en/483910a4b6f14

DWIs permit earlier detection of stroke than other methods such as T2WI (T2 weighted image).

http://www.radiologyassistant.nl/en/483910a4b6f14


31 October 2015 Slide 19Institute of Neuroscience and Medicine

Diffusion Anisotropy.
Diffusion Tensor Imaging (DTI) approach.
There are some cases in which diffusion depends on the spatial direction along which the 
gradient is applied. 
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The presence of elongated cells, such as axons and dendrites, affects the trajectory of 
diffusion molecules, making diffusion along the main directions less obstructed than in a 
direction perpendicular to the main axes.

According to Einstein’s relation, the mean square displacement in a given direction “i”, 
and a diffusion time td, will be:
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Formally, anisotropic diffusion is characterized by a diffusion tensor Dij
and the signal attenuation can be written as:

Signal attenuation. b-matrix (matrix of b-values).
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Since D is a second-order symmetric positive definite tensor, one needs to know the ADC 
for at least 6 non-collinear directions.
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• For N = 6, the solution is exact.

The number of gradient directions available for clinical applications ranges from 6 up to 256.
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From the experiment to the diffusion tensor.
One has to measure a non-weighted signal value S0 (b = 0 s/mm2) and 
N diffusion-weighted signals Sk (k = 1..N ≥ 6). Then, one has to solve the 
next system of equations

• For N ≥ 6, the system is overdetermined:  tensor 
estimation is more robust

6 directions 12 directions 30 directions
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Tensor invariants.

These parameters are proposed to account for physical information 
regardless the choice of the frame of reference.
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Colour-encoded FA

3v Eigenvector associated to the main 
eigenvalue,  modulated by FA

MD FA Colour-encoded FA

• red = left-right.
• green = anterior-posterior.
• blue = top-bottom.
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Summary so far …
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Fibre Tracking
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• Assuming that the largest principal axis of the diffusion tensor 
aligns with the predominant fibre orientation.

• Construct a vector field
In-plane

Through-plane
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Another vector field map
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• Connect voxels on the basis of discrete vector fields (local principal eigenvector 
orientation)

• FA threshold (0.25-0.35). Helps to exclude gray matter and to segment 
white matter tracts that are separated by gray matter.

Discrete vector field
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Continuous vector field
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Fibre tracking by seeding a region of region of interest in the corpus callosum with 
increasing fibre densities.

http://www.bioimagesuite.org/doc/node24.html#SECTION06310000000000000000

Choose to seed the tracking using a single point, a region of interest or a volume.

Corpus callosum tracking

http://www.bioimagesuite.org/doc/node24.html%23SECTION06310000000000000000
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Pretty Pictures…

Isotropic resolution diffusion tensor imaging 
with whole brain acquisition in a clinically 
acceptable time

–D.K. Jones, S.C.R. Williams, D. Gasston, 
M.A. Horsfield, A. Simmons, R. Howard
–Human Brain Mapping 15, 216-230 (2002)
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Pretty Pictures…
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Limits of DTI.
The problem of multiple fibres populations.
An inherent problem of DTI is the impossibility to recognize crossing fibres. 
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Suggested notes

• H. C. Torrey, “Bloch Equations with Diffusion Terms”, Physical 
Review, vol. 104, 563 (1956).
• A. Abragam, “Principles of Nuclear Magnetism”. Oxford Univ. 
Press. London and New York (1961).
• J. Kärger, H. Pfeifer and W. Heink, ”Principles and Application
of Self-Diffusion Measurements by Nuclear Magnetic
Resonance”. Advances in Magnetic Resonance, vol. 12 (1988).
• D. A. Yablonskiy and A. L. Sukstanskii, “Theoretical models of
the diffusion weighted MR signal”. NMR in Biomedicine, vol. 23,
661 (2010).
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