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Structure of Matter (SoM): 

Lecture 2: Nuclei
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Lecture 2 – Nuclei – Introduction

(Atomic) Nuclei

Previous Lecture: Atoms



15. September 2013 Institut für Kernphysik (IKP) Folie 3

Lecture 2 – Nuclei – Introduction

Isotopes (different numbers of neutrons)

Un-stable
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Lecture 2 – Nuclei – Introduction

Table of Isotopes (Nuclides): Limits of Stability
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Nuclei with certain numbers of protons and neutrons, up to a maximum 

proton number, are “stable” (i.e. they do not change their identity over 

long periods of time).

The reason is that a new force (“nuclear force”, “nucleon-nucleon 

interaction”) counter-acts (over compensates) the electromagnetic 

repulsion between protons:

But: Two protons alone are NOT bound; in addition a neutron is needed 

What nucleus is this ?

Lecture 2 – Nuclei – Stability 



15. September 2013 Institut für Kernphysik (IKP) Folie 6

Lecture 2 – Nuclei – Stability

Nucleon-Nucleon Interaction
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If the number of protons and neutrons in a nucleus is “not right”, it 

will be “unstable” and “decay” into a (more) stable configuration; this 

nuclear property is called “radioactivity” 

The following possibilities exist for this transmutation: 

a-decay: # p – 2, # n – 2

b--decay:     # p + 1, # n – 1

b+-decay: # p – 1, # n +1

p-emission: # p – 1

n-emission: # n – 1

Plus: an excited nucleus (not in ground state) can emit g-rays

Lecture 2 – Nuclei – Stability 
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Lecture 2 – Nuclei – Stability

a - Decay
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Lecture 2 – Nuclei – Stability

b- - Decay
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Lecture 2 – Nuclei – Stability

b - Decay
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Lecture 2 – Nuclei – Stability

g - Decay
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If the number of protons in a nucleus becomes too large, the electro-

static repulsion between protons cannot be compensated, and the 

nucleus “fissions”:

“spontaneously” “induced” (e.g., by a neutron)

Lecture 2 – Nuclei – Stability 
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Lecture 2 – Nuclei – Stability

Chain Reaction (  Reactor; Bomb)
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In order to understand why one can gain energy in nuclear fisson, 

one has to look at the (binding) energy of the nucleons (protons and 

neutrons) in a nucleus:

 Start with a comparison of nuclear binding with atomic electron 

binding:

Binding energy is much larger!

Lecture 2 – Nuclei – Energy  
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In nuclei the nucleons (protons, neutrons) also occupy certain energy

states; since they are fermions, only two protons and two neutrons can 

be in one level:

The binding energy of the least bound nucleons is about 8 MeV.

Lecture 2 – Nuclei – Energy  
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In order to obtain an estimate how the average binding energy of a 

nucleus comes about and how it changes with mass number A, the 

nucleus is considered a liquid drop; the energy then comprises: 

The parameters are obtained by fitting the above expression to the 

experimental data.

Lecture 2 – Nuclei – Energy  
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Lecture 2 – Nuclei – Energy

Binding Energy of Nuclei
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Once a nucleus has been formed, it takes energy to take it apart:

Energy of the composite object + energy expended to split it up 

= sum of the energies of the separate parts after the split

Mass of bound system 

= sum of masses of its parts - (binding energy)/c2

If the binding energy of the products is larger than one gains energy by 

splitting (“fission”) or combing (“fusion”) nuclei.

Lecture 2 – Nuclei – Energy  
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Lecture 2 – Nuclei – Energy

Example: 2p + 2n  4He
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Lecture 2 – Nuclei – Energy

Energy Balance in Nuclear Fission
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Lecture 2 – Nuclei – Energy

Nuclear Fission
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Lecture 2 – Nuclei – Energy

Energy Balance in Nuclear Fusion
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Lecture 2 – Nuclei – Energy

Nuclear Fusion
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Lecture 2 – Nuclei – Energy

Energy Production
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Lecture 2 – Nuclei – Energy/Stability

Table of Isotopes (Nuclides) in 3D
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If it is energetically favorable to fission or to fuse, why does this not 

happen all the time?

 A “barrier” is prohibiting or preventing this; but: the barrier can also 

be “tunneled” (a quantum mechanical effect).

Lecture 2 – Nuclei – Energy/Stability  
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Lecture 2 – Nuclei – Energy/Stability

Quantum Mechanical „Tunneling“
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Lecture 2 – Nuclei – Energy/Stability

Mass of Neutron and Proton
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Lecture 2 – Nuclei – Excitation 

Ground-state nuclei can absorb energy and become “excited”

There are many possibilities: 

(i) single nucleon (neutron, proton) excitations

(ii) collective excitations (rotation, surface vibration, oscillation)

De-excitation (“decay”) frequently happens by light ( photons,        

g-rays) and also by particle emission
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Lecture 2 – Nuclei – Excitation

Excited States of a Nucleus
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Lecture 2 – Nuclei – QM Model 

Besides the “bulk models” (Fermi-gas, liquid drop model), there are 

also quantum mechanical models which describe the nucleus as a 

system of independent (i.e. not directly interacting nucleon system) in   

a mean nuclear potential (nuclear “shell model”): 
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Lecture 2 – Nuclei – QM Model

Magic Numbers in Nuclei (as seen in BE)
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Lecture 2 – Nuclei – Deformation 

Nuclei in their ground state can either be spherical or deformed; the 

following (static) nuclear shapes have been observed: 

The reason why this is so (i.e. why the minimum energy is not 

reached for a sphere) is complicated due to the complexity of the 

nuclear forces (which themselves are the result of the strong force 

between quarks (see below)).
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Lecture 2 – Nuclei – Deformation

Example Deuteron
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Lecture 2 – Nuclei – Deformation

Spheroidal („Quadrupole“) Deformation
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Lecture 2 – Nuclei – Excitation 

Nucleons in a nucleus can oscillate coherently in different ways 

 “giant resonances”



15. September 2013 Institut für Kernphysik (IKP) Folie 37

Lecture 2 – Nuclei – Excitation

Nuclear Giant Resonances
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Lecture 2 – Nuclei – Excitation

Giant Dipole Resonances
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Lecture 2 – Nuclei – Nucleosynthesis 

Big Bang nucleosynthesis (BBN) began a few minutes after the Big 

Bang, when the universe had cooled sufficiently to allow deuterium

nuclei to survive disruption by high-energy photons:
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Lecture 2 – Nuclei – Nucleosynthesis

Big Bang Nucleosynthesis (BBN)
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Lecture 2 – Nuclei – Nucleosynthesis

Big Bang Nucleosynthesis (BBN)
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Lecture 2 – Nuclei – Nucleosynthesis 

In BBN, no elements heavier than beryllium (or possibly boron) could 

be formed. Stellar nucleosynthesis in stars is responsible for the 

galactic abundances of elements from carbon to iron by thermonuclear 

fusion. Of particular importance is carbon, because its formation from 

He is a bottleneck in the entire process. Carbon is produced by the 

triple-alpha process in all stars: 



15. September 2013 Institut für Kernphysik (IKP) Folie 43

Lecture 2 – Nuclei – Nucleosynthesis

Stellar Nucleosynthesis
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Lecture 2 – Nuclei – Nucleosynthesis 

Stellar nucleosynthesis in stars by thermonuclear fusion stops around 

iron; heavier elements are produced in explosive nucleosynthesis in 

supernovae:

Example: SN1987A

after before
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Lecture 2 – Nuclei – Nucleosynthesis

Explosive Nucleosynthesis
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Lecture 2 – Nuclei – Nucleosynthesis

Summary Nucleosynthesis
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Lecture 2 – Nuclei – Nucleosynthesis

Summary Nucleosynthesis
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Lecture 2 – Nuclei – Properties 

The nuclear constituents, protons and neutrons, have the quantum-

mechanical property of “spin” (often illustrated as an internal rotation,

like a spinning top); affiliated with it is a magnetic moment:

Nuclei with an even number of protons and neutrons do not have a 

net nuclear spin; they are magnetically neutral; nuclei with an uneven 

number of protons or neutrons have a net spin / magnetic moment:

( this will become important for MRI)
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Lecture 2 – Nuclei – Properties

Example: Parity Violation in 60Co
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Lecture 2 – Nuclei – Properties 

The simplest nucleus, the proton (also the neutron), can be excited

by different meachnisms (e.g. absorption of a photon or a particle) into 

the so-called D- and other (more massive/more energetic) resonances:

This is a very strong indication that the “nucleon” (proton, neutron) is  

not an elementary particle, but has internal structure!



15. September 2013 Institut für Kernphysik (IKP) Folie 51

Atomic Nuclei: the nucleus is the very dense region consisting of 

protons and neutrons at the center of an atom. 

The diameter of the nucleus is in the range of 1.75 fm (1.75×10−15 m) 

for hydrogen (i.e. a single proton) to about 15 fm for the heaviest 

atoms, such as uranium. These dimensions are much smaller than the 

diameter of the atom itself (nucleus + electron cloud), by a factor of 

about 23,000 (uranium) to about 145,000 (hydrogen).

Nuclei are bound together by the nuclear force, which is attractive at 

the distance of typical nucleon separation, and this overwhelms the 

repulsion between protons due to the electromagnetic force, thus 

allowing nuclei to exist. 

Nuclei can be excited in many different ways; they decay via a, b and g-

decay (called “radioactivity”) and by nuclear fission.

What is the internal structure of the nucleon? Next lecture! 

Lecture 2 – Nuclei – Summary 
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Lecture 2 – Nuclei – Properties 


