

Institute for Energy und Climate Research : Troposphere (IEK-8)

Prof. Dr. Dr. h.c. Andreas Wahner Prof. Dr. Astrid Kiendler-Scharr

The Atmosphere

The Atmosphere

Composition:

N₂ (78%), O₂ (20%), Ar (1%), H₂O (~1%) trace gases (< 0.05 %)

Gas Phase Composition of the Atmosphere

IÜLICH

Atmospheric Chemistry and Dynamics

Oxidative Chemistry

OH, HO₂, NO₃, O₃, XO

- Atmospheric Self-Cleaning
 Oxidative removal of trace gases
 (CH₄, HCFCs, VOCs, CO, SO₂, NO_x)
- Chemical Transformation

Formation of secondary pollutants, gaseous + particulate phase $(O_3, H_2O_2, HNO_3, H_2SO_4, OVOCs, SOA)$

VOC	volatile organic compounds
OVOC	oxygenated VOC
SOA	secondary organic aerosol

Atmospheric Trace Gas Degradation by Oxidation

Trace Gas	Global Emission (Million Ton per year)	Degradation by OH-radikals
CO	2800	85 %
Methan	530	90 %
Alkane	20	90 %
lsoprene	570	90 %
Terpene	140	50 %
NO ₂	150	50 %
SO ₂	300	30 %
(CH ₃) ₂ S	30	90 %
CFCI ₃	0,3	0 %

Self Cleaning of the Atmosphere

Health & Climate

Institute IEK-8: Troposphere

Chemistry-Climate-Interaction

Time scales:

Chemistry – Climate - Interaction

days, regional to local

decades, global to regional centennial, global to regional

Air Quality

Ozone, Aerosol, Clouds, Methane, ... Carbon dioxide

Energy production and usage lead to emissions

long-term Climate Change

- \rightarrow integrative analysis of the processes between biosphere, troposphere, and stratosphere
- \rightarrow to understand the impact of current and future energy production and usage on atmospheric chemistry and dynamic

Institute IEK-8: Troposphere

observation > process understanding > simulation > societal options

unresolved questions

- self-cleaning of the troposphere;
- interaction of biogenic and anthropogenic emissions;
- tropospheric ozone production;
- formation and aging of aerosol;
- night-time chemistry;

observation and simulation

- long-term tropospheric observations
- ground based airborne measurements (Zeppelin NT, drones, HALO,...);
- atmosphere simulation chamber
 SAPHIR
- plant chamber SAPHIR+

process understanding

parameterization of chemical, dynamical and micro-physical processes

global and regional simulations and predictions

IEK-8 research foci

Emission

atmospheric transformation

Focus:

Air Quality Climate

- Long term observations of tropospheric composition change: passenger aircraft as part of a global earth observation system
 - → European research infrastructure IAGOS AISBL
- Radical chemistry and atmospheric oxidation processes in the lower troposphere: oxidation capacity and trace gas degradation
 - → Process understanding, Air Quality
- Gas to particle conversion, particle formation, and ageing: quantifying of aerosol processes
 Anthroposphere – Biosphere – Atmosphere interaction, Air Quality
- Global and regional impacts of atmospheric processes on tropospheric composition and climate: energy meteorology, operational chemical weather forecast, from science to service
 - → Copernicus Atmospheric Service, GEO, WMO, IPCC

In-service Aircraft for a Global Observing System

www.iagos.org

European Research Infrastructure for Earth Observation using Passenger Aircraft

Technical Goals

Equipping 20 long-haul aircraft with scientific instruments for:

- atmospheric chemical composition (H₂O, O₃, CO, NO_x, NO_y, CO₂, CH₄)
- aerosol and cloud particles

Long-term deployment (20 years) Global coverage Open data policy (CAMS/GEO/GEOSS) Near real time data provision

Deploy the CARIBIC Container

Large number of species, including those above plus VOCs, CFCs, aerosol chem. composition, H₂ isotopes, SO₂

Scientific Objectives

- Changes in the Tropopause Region
 - ozone background and trend
 - water vapour background and trend
- Validation of Atmospheric Models and Satellite Retrievals
 - tropospheric profiles of H₂O, O₃, CO, CO₂, CH₄, NO_x, aerosol

• Global Air Quality

- influence of developing regions
- long-range transport of air pollutants
- biomass burning, climate change, ...
- International Transfer Standards
 - same systems deployed globally

Association Internationale sans but lucratif

IBERIA

European Research Infrastructure for Earth Observation using Passenger Aircraft

Lufthansa AIRFRANCE / SCHINA AIRLINES > CATHAY PACIFIC

Association Internationale sans but lucratif

European Research Infrastructure for Earth Observation using Passenger Aircraft

IAGOS-CORE aircraft schedule:

- In 2016, 7 equipped aircraft in regular operation
- Approx. 500 flights per aircraft per year
- More than 200 airports worldwide visited regularly

Radical chemistry and atmospheric oxidation processes in the lower troposphere

SAPH

Goals

- Atmospheric self-cleaning and air quality
- Experimental determination of entire radical budgets
- Nighttime radical chemistry
- Processes transforming gas phase to secondary organic aerosol

Field studies ground and airborne

- Ground Comprehensive, day / night, seasons (2016/2017); china winter (2015/16);
- SAPHIR /SAPHIR+ Aerosol formation and aging; internat. HOx-comp, OHlifetime:
- Lower Troposphere Zeppelin based missions
- Free Troposphere HALO missions (OMO-EU (2015), OMO-ASIA (2015))

Key techniques / developments

- OH, HO_2, RO_2 LIF and DOAS
- OH reactivity Pump + probe technique
- NO_3, N_2O_5 Cavity ring down technique (under develop.)
- mass-spec and specific sensors for use on drones
- Stable isotopes Isotope-ratio mass spectrometry

Atmosphere Simulation Chamber SAPHIR

Instrumentation

LIF DOAS	ОН, НО ₂ , RO ₂ , <i>k</i> _{OH} ОН
GC-MS	VOCs
PTRMS	VOCs, Isoprene
	MVK+MACR (H_3O^+),
	MACR (NO ⁺ mode)
CLD	NO, NO ₂ , O ₃
RGA	CO
LOPAP	HONO
Hantzsch	НСНО
Radiometry	<i>j</i> -values

Volume 270 m³ Double walls (Teflon foil) Light source: solar radiation 1-min mixing time

Gas to particle conversion, particle formation and ageing

Impact cloud formation climate, air quality

Transformation

chemical ageing atmospheric lifetime multi component aerosols

Formation

complex emissions particle formation potentials

<u>Goals</u>:

- New plant chamber SAPHIR+
 - real emissions
 - tropospheric radical chemistry
- ➢ particle suppression by
 BVOC
 → nucleation
- stress emitted BVOCs
- highly oxidized organic multifunctional molecules (HOM)
- anthropogenic emissions

Supporting international observing systems

Global Monitoring of Environment and Security (GMES) GMES Atmospheric Service (GAS) [seit 2013]

Mesoscale EURAD 4D-var inverse modelling system

IÜLICH

Observation systems

In-situ observations

polar orbiting satellites

Which is the requested resolution? BERLIOZ grid designs and observational sites

Emission source estimates by inverse modelling Optimised emission factors

Institute for Energy und Climate Research JÜLICH Troposphere (IEK-8)

- Role of chemistry and physics in climate variability and change
- Interaction between air quality and climate change
- Leadership in international projects, coordination with universities and institutions
- Facilitating technology transfer

Innovation and scientific basis for societal and political decisions: energy options, mitigation- and adaption strategies

Thank you

by Glynn Gorick