

Autumn Lectures / Tbilisi / 2013

Laser-plasma interactions

22 October 2013 | Markus Büscher

Conventional (RF) accelerators

Need for novel approaches

Need for novel approaches

22 October 2013

Development of laser intensities

High intensities

Extreme conditions ...

In the core of the sun, the <u>energy density</u> is about 10¹⁰ J/cm³

The energy density produced by a pulse of 500 J and 1 ps in duration, focused into a 5 μ m focal spot, is about 10¹¹ J/cm³

The <u>light pressure</u> is in the order of Gigabar (10⁹ atm)

This is the basis for the enormous <u>application potential</u> of powerful lasers

Laser: basic properties

LASER = "Light Amplification by Stimulated Emission of Radiation"

Laser: basic properties

Laser: basic properties

Nowadays peak powers up to Petawatt = 10¹⁵ Watt are available (e.g. 1 Joule in <u>1 fs</u>)

22 October 2013

Chirped pulse amplification (CPA)

CPA: Ti:Sa crystals

Emission and absorption spectrum

CPA: Pulse shape

Measured at ARCturus / Düsseldorf Univ.

Institute für Laser- und Plasmaphysik, Univ. Düsseldorf (Prof. O.Willi)

PULSAR Ti:Sapphire Laser: 100 TW, 800 nm
 ~ 2,5 Joule, less than 25 femtoseconds focused on 10 microns

Particle acceleration: typical setup

Response of electrons to plane waves

Electron is at rest again when laser pulse is gone!

Response to finite wave packet

Ponderomotive force

Force that a charged particle experiences in an inhomogeneous oscillating electromagnetic field

$$\vec{F}_p = \frac{-e^2}{4m_e\omega^2}\nabla E_0^2$$

$$U_p \text{ [eV]} = 9.33 \cdot 10^{-14} \cdot I[\text{W/cm}^2] \cdot \lambda [\mu\text{m}]$$

Acceleration mechanisms

- 1) Radiation pressure ("direct", thin foil targets)
- 2) Wake fields / bubbles (gas targets)
- 3) Target Normal Sheath Acceleration (foil & pellet targets)
- 4) Break-Out Afterburner (thin foil targets)

5) ...

Radiation Pressure Acceleration (RPA)

Strong <u>electro-magnetic fields</u>^{*)} in the laser pulse accelerate charged particles

^{*)} Typical values: $E = 3 \cdot 10^{13}$ V/m, $B \sim 10^5$ T @ $I = 10^{20}$ W/cm²

Radiation Pressure Acceleration (RPA)

 $I_0 = 6 \cdot 10^{22} \text{ W/cm}^2$, $n_0 = 1.1 \cdot 10^{23} \text{ cm}^{-3} (100 \text{ n}_c)$, $r_0 = 10 \text{ }\mu\text{m}$

simulation: P.Gibbon, FZ Jülich

see also (for lower laser intensities): B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010) http://www.fz-juelich.de/portal/index.php?index=85#teilchenbeschleuniger

Laser-plasma interaction

wake field laser pulse oscillating electrons plasma

Wake fields in plasmas

Plasma oscillation

Rapid oscillations of the electron density in conducting media such as plasmas or metals

 ϵ_0

Frequency only depends weakly on the wavelength

$$\omega_{p} = \sqrt{\frac{n_{e}e^{2}}{\varepsilon_{0}m_{e}}}$$

$$f_{p}[\text{Hz}] \approx 8980\sqrt{n_{e}[\text{cm}^{-3}]}$$

$$n_{e} = \text{electron density}$$

$$e = \text{electron charge}$$

$$m_{e} = \text{electron mass}$$

$$\varepsilon_{0} = \text{permittivity of vacuum}$$

Critical plasma density

$$n_{\rm cr}[{\rm cm}^{-3}] \approx 1.1 \cdot 10^{21} / \left(\lambda_{\rm Laser}[\mu {\rm m}]\right)^2$$

$$n_e \ll n_{cr} \rightarrow$$
 wave speed = speed of light

- \rightarrow plasma transparent, "under-dense plasma"
- \rightarrow gas targets
- $N_{\rm e} \gg n_{\rm cr} \rightarrow$ plasma electrons "short-circuit" Laser *E*-field
 - \rightarrow wave is damped & reflected, "over-dense plasma"
 - \rightarrow solid (foil) targets

Wake fields: low laser intensity

Electron density perturbation & longitudinal wake field

V.Malka et al., Nature Physics 4, 447-452 (2008)

Wake fields: high laser intensity

Electron density perturbation & longitudinal wake field

Wake fields: bubble regime

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B 74, 355–361 (2002)

surfing behind a wake boat

"Bubble" acceleration (gas targets)

simulation: P.Gibbon, FZ Jülich

Observation of plasma channel

J.Hein, R.Sauerbrey, Generation of ultrahigh light intensities and relativistic laser-matter interaction, in Springer Handbook of Lasers and Optics (2007), ISBN 978-0-387-95579-7

Plasma observation: shadow images

60 TW, 7.8 bar He

Images reveal plasma development and rapid filamentation Time resolution: few 10 fs (!)

Plasma observation: interferometry

Target Normal Sheath Acceleration (TNSA)

TNSA: <u>foil</u> targets

TNSA: mass limited targets

TNSA: Hydrogen pellet targets

2-D Simulations from the JSC Jülich Laser pulse with λ =1 µm and fokus Ø =10 µm hits a 10 µm frozen H₂ pellet

maximum proton energy can further be increased (factor 4) by optimization of the focus size

Break-Out Afterburner (BOA)

- a) Target Normal Sheath Acceleration (TNSA) phase
- b) Intermediate phase
- c) Laser Breakout Afterburner (BOA) phase (plasma becomes underdense)

TNSA vs. BOA

RF vs. laser acceleration

RF cavity

1 m 1 MV/m }1 MeV

100 µm 100 GV/m }10 MeV

An up-and-coming technology ...

Technological revolutions do happen!

Oct 2002: largest CRT display, 102cm diagonal, \$15,000, 63cm deep, 92kg Oct 2010: plasma display, 159cm diagonal, \$4,000, 3.6cm deep, 33kg

Has plasma

technology...

60% larger diagonal,

3 times lower weight,

15 times thinner,

3-4 times cheaper,

1 extra dimension, ..

5

Helmholtz Association HGF

Research Centers: 18

Total staff: ~ 33 000

Total budget ~ 3.4 billion €

Research Fields:

Energy Earth and Environment Health Key Technologies Structure of Matter Aeronautics, Space and Transport

"Big" lasers in the HGF: e.g. DESY Hamburg

<u>Sept. 2010</u>: Laser/plasma group established

J. Osterhoff, Talk at 470 W.-E. Heraeus-Seminar, 12/2010

→ Plasma-based particle accelerators

"Big" lasers in the HGF: e.g. GSI Darmstadt

<u>2008</u>:

PHELIX (Petawatt Hoch- Energie Laser für SchwerloneneXperimente) 500 TW

→ Ion-laser interactions
→ X-ray laser

"Big" lasers in the HGF: e.g. Dresden-Rossendorf

<u>2008:</u> High-Power Laser Laboratory 150 TW laser DRACO (Dresden laser acceleration source)

<u>2012</u>: PW Laser

- → Laser particle acceleration
- → Cancer research

JuSPARC = <u>Jülich short-pulse particle and radiation centre</u>

