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Magnetic Resonance Imaging
Introduction to MRI
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Magnetic Resonance Imaging

MRI is a tomography method but it is very different from CT (Computer Tomography)

Some positive characteristics of MRI:

Non-ionising Using radio-waves, not X-rays

Non-invasive No contrast agents required

Soft-tissue sensitive MRI signal ~ Proton density ρ ~ H2O

Quantitative MRI signal ~ Magnetisation = f(ρ,T1, T2, T2*, D, α, …)

 density, relaxometry, diffusivity, perfusion, …

Multi-contrast Various imaging sequences/ parameters

Multi-purpose/modal Anatomy, activity, connectivity, vessels, …

Oblique slices Flexible spatial encoding with arbitrary image slice orientation.

MRI weakness:

low signal-to-noise ratio and (conventional) MRI not usable for materials with little water content
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Examples: Multi-Contrast (T1/T2-weighting)
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Examples: Quantitative – Watermap

100%
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Examples: Quantitative – Relaxometry

Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. 

Magn Reson Mater Phy. 2008;21:131-147.
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Examples: Vessels (Angiography)
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Examples: Metabolism (23Na-Imaging)
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Examples: Structural connectivity / DTI

DTI



15 September 2017 Slide 10Institute of Neuroscience and Medicine

Examples: Function / Activity (fMRI)

http://www.radiologie.ruhr-uni-bochum.de/imperia/md/images/institut/mrt/fmri.jpg
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MR Scanner Components (simplified)

Master 

Controller

Gradient

Controller
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Controller

3 Types of magnetic fields:

1. Static field (B0 ║ z)

2. Dynamic gradients (Gi = dBz/dri)

3. Radio-frequency (B1 ┴ z)
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MR Scanner Components (simplified)

3 Types of magnetic fields:

1. Static field (B0 ║ z)

2. Dynamic gradients (Gi = dBz/dri)

3. Radio-frequency (B1 ┴ z)
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Nuclear Spin – Basic overview

 Atomic nuclei are composed of protons and neutrons that have the 

quantum mechanical property: spin.

 The overall spin of the composed nucleus is called nuclear spin.

 The possible values of the spins’ z-component are quantized in integer 

steps.

= Planck’s constant ≈ 6.626068·10-34 J sh2
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The Proton and Spin 1/2

 The most simple atom is Hydrogen, H

 The human body consists of approx. 70% water

 Hydrogen’s nucleus is only one proton.

Its nuclear spin quantum number is S=½, i.e. 

 Associated to every nuclear spin is a nuclear magnetic moment,

 γ is called the gyromagnetic ratio and is nucleus-specific.

For hydrogen, γ = 267.513·106 rad/(s·T).
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Nuclear Zeeman Effect

 Exposed to a static external magnetic field, B0, the z-components of the 

nuclear magnetic moments align with B0.

 Two possible orientations of the magnetic moments: parallel and anti-

parallel with energies
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Equilibrium Magnetisation

 There is a small excess of spins in the lower energy states. 

 However, the small excess amounts in a measurable macroscopic 

magnetisation, M, which is the ensemble average of the nuclear 

magnetic moments.

 The equilibrium magnetisation for N atoms with

nuclear spin quantum number, S, is given by

Curie’s law:

B0≠0

= Boltzmann constant ≈ 1.381·10-23 J / K
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Larmor Precession

 In equilibrium only the spin’s z-components are 

aligned with B0

 All spins precess about B0 with the Larmor 

frequency, ω0

 But the resulting magnetisation is static and 

aligned with B0

 If one excites the spins, i.e., deflect them from their 

equilibrium alignment,

 the magnetisation precesses about B0 with the 

Larmor frequency, ω0

00
B

Larmor frequency
B0≠0
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Larmor Precession – Example

 At B0=1.5T clinical field strength the Larmor frequency (angular 

frequency) is

 In ordinary frequencies, this corresponds to f0=63.9MHz.

 For 9.4T human research scanner: f0=400MHz
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Excitation

 Principle of reciprocity:

 Apply a resonant radiofrequency (RF) pulse to excite all spins, i.e. 

excite the magnetisation from its equilibrium.

 Resonance ↔ frequency of RF pulse = Larmor frequency ω0.
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t

U [V]

MR Signal Reception

 Faraday’s law:

“A changing magnetic flux induces a voltage in a conductive loop.”

(electromotors, dynamos , …)
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Relaxation

 It is intuitive that equilibrium-magnetisation 

must be regained somehow.

 Heuristically described by two relaxation times:

 T1 (longitudinal relaxation time) 

 T2 (transverse relaxation time)

e.g. 

T1=1000ms

e.g. 

T2=100ms

T2 < T1

|M| ≠ const, i.e. funnel-shaped 

trajectory back to equilibrium
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Free Induction Decay (FID)

 The received MR signal decays exponentially with the time constant T2.
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Free Induction Decay (FID)

 The received MR signal decays exponentially with the time constant T2.

 Local B0 inhomogeneities cause an even shorter effective decay time, 

T2* (“T-two-star”).

T2* < T2
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Spin Echo (SE)

 Signal losses due to B0 inhomogeneities is reversible

 Recall a spin echo by inversion of the spins using a 180° pulse.

 The individual spin’s phase evolution due to the B0 induced frequency 

dispersion (T2*) is “rephased”. But T2 decay is irreversible.

90°

180°

Time t

M0

FID ~ exp(-t/T2*)

Spin Echo

Max ~ exp(-TE/T2)

TE

Now, analyse this echo!



15 September 2017 Slide 27Institute of Neuroscience and Medicine

Fast Fourier Transformation (FFT)

 We expect a frequency dispersion of subgroups of spins

 That means: most spins precess with the Larmor frequency but some are 

a little faster and some a little slower

 Obtain spectrum by a Fourier transform (FT) of the time signal, usually 

a Fast Fourier Transform

FFT
Mx

My
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Fast Fourier Transformation (FFT)

 The signal is always demodulated

 This demodulation corresponds to moving to another frame of reference, 

the “rotating frame”

FFT
Mx

My

Mx (demod.)

My (demod.)

Linewidth due to 

dispersion
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Spatial Encoding

 The basic idea of MRI:

Make the precessional frequency a function of space

 The “spectrum” then reflects spatial distribution

 Linear field gradients of the B-field in z-direction, e.g. Gx = dBz/dx

B0

G·x

ω0-dω ω0 ω0+dω

x

ω0
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Spin Echo with Frequency Encoding

Take the spin echo and introduce gradients along x.

90°

180°

Time t

M0

TE

Time t

Gx

Spatial dimension, x

~
 P

ro
to

n
s

Spatial frequency, kx
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Contrast

Different tissues have different T1/T2 times

 Generate different contrasts through sequence timing parameters!

90°

180°

Time t

M0

TE

Time t

Gx
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Imaging Sequences

 Gradient encoding must be applied in 3 dimensions for a complete spatial 
encoding.

 During signal readout: frequency encoding

 In a step-wise procedure (for 1 or more dimensions): phase encoding

 Very common, simultaneous with excitation: slice-selection

 Gradients in x, y, and z-direction (dBz/dx, dBz/dy, dBz/dz)

 Complex pulse sequences are programmed to obtain all necessary data 
for a complete reconstruction of the subject. Often: loop-structure.

 General goal: fill the “k-space” most quickly.

(image space FFT k-space = FT-coefficients = spatial frequencies).

RF

Gz

Gy

Gx

ADC
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Basic Safety Issues – The Main Field

 Permanently cooled-down (liquid Helium, ~ 4K) superconductor produces 
the high, static magnetic field B0 ~ 0.1 – 3 Tesla (1T = 10000 Gauss).

 Compare: the Earth’s magnetic field on its surface ~ 0.5 Gauss.

 Huge force on ferromagnetic material growing rapidly when approaching 
the magnet.

 Objects like a normal fire extinguisher, surgical instruments, tools, keys 
etc. can cause immense (live-threatening) damage.

 Credit cards, cell phones, pacemakers will not work anymore.
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Basic Safety Issues – RF fields

 High frequency em-waves are emitted to the patient in the order of 100 
MHz.

 This can lead to hot spots at metallic edges, e.g. cables in contact with 
the skin or MR-unsafe implants.

 Make-up containing metallic particles can heat (also tattoos!)

 For higher frequencies the wavelength of the radio-waves inside tissue 
approaches the extent of, e.g., the head.

 High amplitudes due to standing-wave effects.

 Amplitude and duration of RF must be controlled due to SAR (Specific 
Absorption Rate) constraints. SAR is an important issue, particularly at 
high field strengths because of the reduced wave length.
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Thank you for your attention
Introduction to MRI


