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Much of technology relies on  

phenomena related to  

electronic properties of materials 
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These properties can be measured in various ways, but to understand 

(and then tune) them, the underlying mechanism needs to be investigated 
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Superstructures 

atomic magnetic moment E.g. more / less electrons 

(anti-ferromagnetism) 

x 

y 

x 

y 

electrons 

nucleus 

The mechanisms are microscopic, 

on the level of the atoms constituting 

the material. 

Often some atoms develop a 

“split personality” and build 

superstructures… 
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Superstructures 

atomic magnetic moment E.g. more / less electrons 

(anti-ferromagnetism) 

x 

y 

x 

y 

To really understand what is going on, we should  

be able to “see” such superstructures 

With scattering methods, 

this is possible ! 



Sample 

Neutrons 

Photons  

Electrons 
5 

All those are  

both particles and waves 
  

momentum ~ wavelength 
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k 

Sample 

k’ 
Q  k’ – k 

2q 

(k  | k | = 2p/l)   

 e 
i( kr – wt ) 

(Q  | Q | = 4p/l  sinq)  

Scattering vector 

(total) 

scattering 

angle 

Neutrons 

Photons 

Electrons 

Elastic Scattering: k = k’ 

Scattering plane 

𝜃 



Nucleus 

electron 

Electron 

electrostatic 

interaction 

Photon 

surface 

electromagnetic 

interaction 

Neutron 

Neutron 

strong 

interaction 

magnetic 

interaction 

Comparison of probes 

EM-i.a. with nuclei? 

Magnetic i.a. with nuclei? 
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Comparison of probes 

Neutrons have simultaneously wave lengths (0.2 – 20 Å) and energies (10-3 - 103 meV) 

corresponding to atomic distances and charakteristic energies in solids (e.g. phonons). 

Neutron scattering can answer the question 

„Where are the atoms, and how do they move?“.  
1 Å  

Relationship 

between frequency 

and wave length for 

neutrons and  

X-rays ( = c/l) 
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Comparison of probes 

X-rays 

sinql  , Å-1 
X-rays 

sinql   Å -1 

Ni 
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Basics of diffraction 
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Two fundamental principles: 

1. Huygens‘ principle: 

Every point in space reached acts as a source of a spherical wave 

(if there are no obstacles except for a point-scatterer, we get a sum 

of the incoming wave and a spherical wave emitting from the scatterer) 

2. Superposition principle: 

For several waves of the same frequency traversing the same point,  

the amplitude at this point is given by the sum of the complex  

amplitudes (with a phase factor) of the individual waves. 



Diffraction: Huygens principle 

Small scattering object (atom, nanoparticle, …)  

acts as secondary source of 

  a spherical wave 

Intensity of the scattered 

radiation depends on the 

details of the interaction  

with the object. 

depends on scattering vector 

Q  (magnitude and direction!) 

I (Q) = | f(Q) |2 

“scattering factor” 11 

What about neutron nuclear  

and Thomson scattering ? 



Diffraction: Young’s ‘2-slit’ interference 

Two scattering objects act as 

coherent secondary sources.  

 Interference pattern due to 

     constructive/destructive 

     inteference 

Phase-correct summation 

of the scattering amplitudes 

(far field / Frauenhofer) 

Δ𝜙𝑖 = −𝐫 ∙ 𝐤 𝑖  
2𝜋

𝜆
= −𝐫 ∙ 𝐤𝑖 

Δ𝜙𝑠 = 𝐫 ∙ 𝐤 𝑠  
2𝜋

𝜆
= 𝐫 ∙ 𝐤𝑠 

Δ𝜙 = 𝐫 ∙ 𝐤𝑠 − 𝐤𝑖 = 𝐫 ∙ 𝐐 

phase difference ∆𝜙

2𝜋
=

path difference Δℓ

wave length 𝜆
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𝐤𝑖 
𝐤𝑠 

𝐫 

𝛼 Δℓ𝑖 = 𝑟 cos 𝛼 

          = −𝐫 ∙ 𝐤 𝑖 



𝐤𝑖 
𝐤𝑠 

𝐫 

Diffraction: two scatterers 

I (Q) = | F(Q) |2 = F(Q) F(Q)* 

𝐹 𝐐 = 𝑓1 𝐐 𝑒𝑖𝐐∙𝐫1 + 𝑓2 𝐐 𝑒𝑖𝐐∙𝐫2 

Phase-correct summation 

of the scattering amplitudes 

(far field / Frauenhofer) 

Δ𝜙𝑖 = −𝐫 ∙ 𝐤 𝑖  
2𝜋

𝜆
= −𝐫 ∙ 𝐤𝑖 

Δ𝜙𝑠 = 𝐫 ∙ 𝐤 𝑠  
2𝜋

𝜆
= 𝐫 ∙ 𝐤𝑠 

Δ𝜙 = 𝐫 ∙ 𝐤𝑠 − 𝐤𝑖 = 𝐫 ∙ 𝐐 

phase difference ∆𝜙

2𝜋
=

path difference Δℓ

wave length 𝜆
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Diffraction: many scatterers 

Many scatterers analogously 

act as coherent secondary 

sources.  

Far away: interference pattern 

iQ(Rj –Rk ) 
I (Q) =      f(Q)j f(Q)k

*
 e S 

j,k 

position scatterer j,k 

𝐹 𝐐 =  𝑓𝑗 𝐐 𝑒𝑖𝐐∙𝐑𝑗

𝑗
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What about beam divergence, energy-distribution? 

 transversal and longitudinal/temporal coherence 

    ( exercises) 



Continuous scattering distribution  

in general: scattering length density rs 

X-ray scattering on an atom:  

• Single electron: Thomson-scattering (polarisation factor separates) 

• Electrons have a continuous probability density 𝜓 𝐫 2 

𝐹 𝐐 =  𝑓𝑗 𝐐 𝑒𝑖𝐐∙𝐑𝑗

𝑗

 

𝑓 𝐐 =  𝜓 𝐫 2𝑒𝑖𝐐∙𝐫 𝑑3𝑟 

form factor (generally: scattering amplitude) 

Fourier transform ! 
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Folie 16 

Atomic form factor 

Example: Carbon 

Contribution of different shells to the scattering amplitude 

 

localised in real space ↔ extended in reciprocal space 

𝑓 𝐐 =  𝜓 𝐫 2𝑒𝑖𝐐∙𝐫 𝑑3𝑟 



Diffraction: many scatterers 

Many scatterers analogously 

act as coherent secondary 

sources.  

Far away: interference pattern 

iQ(Rj –Rk ) 
I (Q) =      f(Q)j f(Q)k

*
 e S 

j,k 

position scatterer j,k 

𝐹 𝐐 =  𝑓𝑗 𝐐 𝑒𝑖𝐐∙𝐑𝑗

𝑗
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What about beam divergence, energy-distribution? 

 transversal and longitudinal/temporal coherence 

    ( exercises) 



Crystalline Matter 
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Atoms in matter usually arranged in 3-dimensional 

periodic lattices (crystal) 

Simple-cubic lattice 

(a=b=c) 

Unit cell  

(repeats infinitely along x,y,z) 

x 
y 

z 

Crystal is natural 3D 

diffraction grating 

b a 

c 



Crystalline Matter 
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Atoms in matter usually arranged in 3-dimensional 

periodic lattices (crystal) 

iq(Ri –Rj ) 
I (q) =      fi fj

* e S 
i, j 

Atoms identical 

        =  f f*       e S 
i, j 

iq(Ri –Rj ) 

= Iatom 

= Iatom |    e      | S 
 i 

iqRi 2 

Math: |Si Ci |
2 = Sij CiCj

* 
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I(q) = Iatom |    e      | S 
 i 

iqRi 2 

How to maximize 

Guess : choose q so that for all i e         is 1 
iqRi 

 qR = 2pn with n integer,  

     for all lattice vectors R 

Otherwise 

destructive 

Interference ! 

b a 

c 

qxa = 2pl 

qyb = 2pm 

qzc = 2pn 

l,m,n integer 

Laue 

equations 

Bragg peaks fulfilled 
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qR = 2pn with n integer,  

     for all lattice vectors R 

The set of vectors q fullfilling the condition 

is also a lattice, the reciprocal lattice to R. 

Coordinates usually given in units of 

reciprocal lattice constants, (h,k,l ) 

The reciprocal lattice of a simple-cubic lattice with lattice constant a 

is also a simple-cubic lattice, with lattice constant 2p/a 

2p/a 

2p/a 2p/a 
a a 

a 



Ewald construction 

We have 

Q = k’ – k 

 
and 

k’ 

k 

Q 

| k’ | = | k | =2p/l 
for elastic scattering 

Qmax = 4p/l.   

 Condition for diffraction: l < 2a 

Ewald 

sphere 

reciprocal 

lattice 

000 100 

010 

200 300 

020 

030 

210 310 

radius  

Bragg conditions may be achieved by 

scanning the wave length or by  

„rocking“ the crystal  

= rolling the reciprocal lattice relative to   

  the Ewald sphere 
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Ewald construction 

We have 

Q = k’ – k 

 
and 

k’ 

k 

Q 

| k’ | = | k | =2p/l 
for elastic scattering 

Qmax = 4p/l.   

 Condition for diffraction: l < 2a 
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lattice 
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= rolling the reciprocal lattice relative to   
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Laue method 

000 100 

010 

200 300 

020 

030 

210 

Radius 

2p / lmin 

Radius 

2p / lmax 

Quartz, 32 

l 
lmin lmax 

I 
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Crystal rotation methods 

source 

a
re

a
 d

e
te

c
to

r / film
 Ewald 

sphere 

reciprocal 

lattice 

000 

l  fixed 
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Single crystal diffractometry 

0.1 mm 

27 Agilent Supernova – dual (Cu Ka/Mo Ka) microfocus source / CCD det. 
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Structure factor 
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A second atom type: 

lattice with basis 

Every atom position R is sum of V+u 

where V is a lattice vector and 

u is in the unit cell 

u1 = 0 

u2 = (1/2a,1/2b,1/2c) 

 Laue condition as before 

I(q) = |    e      | S 
 i 

iqVi 2 
  |     fj e      | 

2 S 
 j=1 

n 
iqui 

 Fhkl , structure factor 

General scattered intensity (without proof) 

b a 

c 



Structure factor 
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A second atom type: 

lattice with basis 

Every atom position R is sum of V+u 

where V is a lattice vector and 

u is in the unit cell 

u1 = 0 

u2 = (1/2,1/2,1/2)a 

Fhkl =      fj e       S 
 j=1 

n 
iqui 

=  f1 e        + f2 e 
2piq0 2pi (h/2+k/2+l/2) 

1 1 if h+k+l even 

-1 if h+k+l odd 

If f1 = f2 

half the reflections  

are extinct 



magnetic moment 

“super-cell” : 2a 

crystallographic cell : a 

Super structures 

e.g. valence     2+    3+ 
x 

y 

x 

y 

unit cells: 

reciprocal lattice : 

a* 

b* 

a* 

b* 

Fe2OBO3 , Pmcn 
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How will the superstructure affect scattering on the sample ? 



How will the superstructure affect scattering on the sample ? 

magnetic moment 

“super-cell” : 2a 

crystallographic cell : a 

Super structures 

e.g. valence     2+    3+ 
x 

y 

x 

y 

unit cells: 

reciprocal lattice : 

a* 

b* 

a* 

b* 
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h =

a* 

b* 

100 K [MA et al., PRL 99, 086403 (2007)] 

Fe2OBO3 , Pmcn 
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How strong ? 



magnetic moment 

“super-cell” : 2a 

crystallographic cell : a 

Super structures 

e.g. valence     2+    3+ 
x 

y 

x 

y 

unit cells: 

Fe2OBO3 , Pmcn 
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Fh,k,l =   f1 + f2 e 
2pi ( h/2+k+l ) 

Supercell basis, 

i.e. super-peaks 

are those with 

h odd 

for h odd 

(superstructure 

reflections) 

=   f1 – f2  
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h =

100 K

a* 

b* 

Doubling of unit cell 

along a at low T 

X-ray diffraction: 

Laboratory source 

(Mo Ka) 

average structure

Fe1a

Fe1b

Fe2b

Fe2a

2a

Fe1d

Fe1c

Fe2c

Fe2d

100 K :



Summary of concepts 
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Scattering can see directly microscopics underlying various phenomena 

Particles used in scattering: neutrons (including magnetic), x-ray, electrons (surface) 

Diffraction: Interference as in optics, crystals as 3D diffraction gratings 

Laue condition and Bragg peaks, reciprocal lattice, Ewald sphere 

Maximum wavelength useful for diffraction 

Atomic form factor, structure factor 

Superstructure reflections and cells 


