

Neutron sources for Science

Jörg Voigt Jülich Centre for Neutron Science JCNS

14. September 2017

Contents:

- 1. Why do we want free neutrons?
- 2. What neutrons do we want?
- 3. How do we get free neutrons?
- 4. How do we tailor their properties?

Neutrons: A Special Gift for Science

"Neutrons tell us where the atoms are and how they move."

Clifford Shull Nobel Prize Physics

- holds also for atomic magnetic moments -

Neutrons: A Special Gift for Science

Ultra cold	E <0.5 µeV	λ > 400 Å
Very cold	E=0.5µeV-0.05 meV	$\lambda = (40-400) \text{ Å}$
Cold	E=(0.05-10) meV	$\lambda = (3-40) \text{ Å}$
Thermal	E=(10-100) meV	$\lambda = (0.9-3) \text{ Å}$
Hot	E=100 meV -1eV	$\lambda = (0.3-0.9) \text{ Å}$

Clifford Shull Nobel Prize Physics

Length- and Time Scales JÜLICH Covered by Research with Neutrons

Information Technologies

CMD Europhysics Prize 2016 Ch. Pfleiderer, P. Böni MLZ

Skyrmions:

- topologically stabilized spin vortices
- possible elements of a future energy efficient IT - <u>spintronics</u>
- discovered by neutrons at MLZ What drives the formation of skyrmions?

compare: Physics-Nobelprize 2016 David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz

Neutron triple axis spectroscopy reveals the underlying interaction parameters

Magnon spectrum of the helimagnetic insulator Cu_2OSeO_3 P. Y. Portnichenko, et al.; Nature Communications <u>7</u>, 10725 (2016); DOI: 10.1038/ncomms10725

neutrons: sensitive to magnetism & elementary excitations

Health

"waste disposal" of the cell:
 > H₂O₂ as metabolite of toxicological concern has to be decomposed
 How is toxic waste removed from the cell?

compare: Medicine-Nobelprize 2016 Yoshinori Ohsumi

Neutron diffraction:

Cytochrome c Peroxidase decomposes toxic substances in the cell; neutron diffraction detects the decisive hydrogen in the intermediate state

Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase Cecilia M. Casadei, et al.; Science 345 (2014), 193; DOI: 10.1126/science.1254398 Direct visualization of a Fe(IV)-OH intermediate in a haem enzyme Hanna Kwon, et al.; Nature Communications 7, (2016), 13445; doi:10.1038/ncomms13445

neutrons: sensitive to light atoms (hydrogen!)

Environment

Observational evidence confirms modelling of the long-term integrity of CO_2 -reservoir caprocks;

N. Kampman et al.;

Nature Communications 7, (2016), 12268; DOI: 10.1038/ncomms12268

neutrons: penetrating & absolute units over many length-scales

Energy

high-temperature polymer electrolyte fuel cells:

- auxiliary power units for e.g. trucks, planes, ships
- stationary applications based on natural gas, methanol or heating oil
 Why does the conductivity depend on the catalyzer concentration?

Neutron back scattering:

- observe proton diffusion through the membrane
- proton diffusion depends on catalyzer concentration
- phosphoric acid trapped around Pt particles

Structure and Proton Dynamics in Catalytic Layer of HT-PEFC M. Khaneft, O. Holderer, O. Ivanova, W. Lüke, E. Kentzinger, M.S. Appavou, R. Zorn, W. Lehnert Fuel Cells <u>16</u> (2016), 406; DOI: 10.1002/fuce.201500167

neutrons: sensitive to diffusion of hydrogen; H-D-contrast

What users want: Good data !!!

$$I_{\rm det} = \varepsilon_{pr} \varepsilon_{\rm sec} \varepsilon_{\rm det} \cdot \sigma_s \cdot I_0$$

$$I_0 \propto \int \Phi(\vec{x}, \vec{p}) \,\mathrm{d}\vec{x}\mathrm{d}\vec{p}$$

Integration limits

- Requested resolution Accepted divergence and bandwidth
- Sample size: avoid over/under illumination

The life cycle of a scattering neutron

Nuclear reactions to release neutrons

180 MeV/n Heat

JÜLICH

30-50 MeV/n Heat

Large scale facilities

Fission nuclear reactions

are used in modern continuous neutron sources.

Spallation nuclear reactions

are used in modern pulsed neutron source

How to obtain free neutrons on a large scale?

Accumulator Ring

Target (Oak Ridge)

(Brookhaven)

Fission nuclear reactions

are used in modern continuous neutron sources.

Spallation nuclear reactions

Linac (Los Alamos and Jefferson)

1

Thermal neutrons from fission reactors

Fission

235 U + neutron \rightarrow fission fragments + 2.5 neutrons + 180 MeV

Source strength:

 $Q = 1 n/180 MeV = 1 n/2.9 \cdot 10^{-11} Ws$

 $\Rightarrow Q \approx 3.5 \cdot 10^{16} \frac{n}{s}$ per MW of reactor power

e.g. for the FRM II:

$$Q \approx 7 \cdot 10^{17} \, \frac{n}{s}$$

Current density of fast neutrons, in 15 cm distance, assuming a point source:

$$j = \frac{Q}{4\pi R^2} = 2.5 \cdot 10^{14} \ \frac{n}{s \cdot cm^2}$$

(compare: $8 \cdot 10^{14} \frac{n}{s \cdot cm^2}$ thermal for FRM II) 14. September 2017

Moderation and Control

Non-resonant absorption $\sim \frac{1}{n} \sim \lambda$

moderation by collision with light atoms (e.g. thermalization after 30 collisions with D_2O) control by absorbing control rod (e.g. Cd, Hf); delayed neutrons!

Spallation sources

Long pulse (ESS): LINAC 2.86 ms pulse length 14 Hz frequency 5 MW beam power ~1 GeV beam energy

Short pulse (e.g SNS): LINAC + accumulator ring ~ 1µs pulse length 60 Hz frequency 1.4 MW beam power ~1 GeV beam power

ESS Target design

- 2.5 m diameter tungsten wheel
- Moderator/reflector plug below/above wheel
- 6000 t steel monolith to shield high energy particles

From MeV to meV: Thermalization by collisions with Deuterium in heavy water

Neutrons in Equilibrium with moderator

Cold	E=(0.05-10) meV	λ = (3-40) Å
Thermal	E=(10-100) meV	$\lambda = (0.9-3) \text{ Å}$
Hot	E=100 meV -1eV	$\lambda = (0.3-0.9) \text{ Å}$

Maxwellian distribution

Cold neutrons: Larger distance or lower energies

Hot neutrons: Small lattice spacing or higher energies

 \Rightarrow heating or cooling of the moderator

The Path to Higher Brilliance: Moderator Materials and Geometry

The Path to Higher Brilliance: Moderator Materials and Geometry

Mezei, F., et al. (2014).

"Low dimensional neutron moderators for enhanced source brightness."

Journal of Neutron Research **17**(2): 101-105.

From Table-Top to Flagship Devices: X-Rays

Folie 24

24

And Neutrons?

Folie 25

<u>25</u>

Fill the Gap for Neutrons !

With a scalable source concept!

Folie 26

Alternatives to spallation?

HBS - novel concept:

optimize the accelerator driven source from ion source to detector for every single instrument:

- ✓ adapted pulse time structure
- ✓ dedicated moderator
- ✓ dedicated optics

"every instrument has its own adapted neutron source!"

Brilliance:
$$B = \frac{particles}{s \cdot mm^2 \cdot mrad^2 \cdot 0.1\%} \frac{\Delta E}{E}$$
 Liouville's theorem:
$$\prod_{i=1..3} (\Delta q_i \cdot \Delta p_i) = const$$

no "one fits all" produce less (minimize cost!) - waste less (maximize brilliance!)

14. September 2017

Projectile and Target

Nuclear Reactions Producing Neutrons

Nuclear Process	Example	Neutron	Heat	
		Yield	Release	
			[MeV/n]	
D-T in solid	400 keV D on	4×10 ⁻⁵ n/d	10 000	neutron gener
target	T in Ti			
Deuteron	40 MeV D on	7×10 ⁻² n/d	3500	
stripping	liquid Li			
Nuclear photo	100 MeV e ⁻	$5 \times 10^{-2} \text{ n/e}^{-1}$	2000	UIING (Hakkaida
effect from e-	on ²³⁸ U			
bremsstrahlung				
${}^{9}\text{Be}(d,n){}^{10}\text{Be}$	15 MeV D on	-1 n/d	1000	
	Be	<u>1.5E-2 n/d</u>		
⁹ Be(p,n;p,pn)	11 MeV p on	5×10 ⁻³ n/p	2000	I FNS 🍝
	Be	_		The Low Energy Neutron Source
Nuclear fission	Fission of	1n/fission	180	
	²³⁵ U by			
	thermal			
	neutrons			
Spallation	800 MeV p	27 n/p or	55 or 30	
	on ²³⁸ U or Pb	17 n/p		SOURCE

from: G. Mank, G. Bauer, F. Mulhauser,

1114

Accelerators for Neutron Generation and Their Applications, Rev. Accl. Sci. Tech 04, 219 (2011)

Folie 29

Producing Neutrons

30

netik **RWTH**AACHEN

Comparison of production efficiency of fast neutrons

U+e: preliminary results, target geometry not optimized concerning photon absorption

	ion	E [MeV]	n/nps_ion	n/s/mA	n/s/kW
	<u>Be+p</u>	5	0.015%	9.49E+11	1.899E+11
	<u>Be+p</u>	10	0.110%	6.86E+12	6.856E+11
	<u>Be+p</u>	25	0.638%	3.98E+13	1.593E+12
9 D (1)	<u>Be+d</u>	5	0.063%	3.94E+12	7.887E+11
Be(d,n)	<u>Be+d</u>	10	0.265%	1.65E+13	1.653E+12
good efficiency,	<u>Be+d</u>	25	1.608%	1.00E+14	4.015E+12
engineering o.k.	Be+d	50	5.724%	3.57E+14	7.145E+12
	<u>Be+d</u>	100	20.522%	1.28E+15	1.281E+13
$^{7}Li(p,n)^{7}Be$	Li+p	2	0.002%	1.02E+11	5.107E+10
Efficiency too low.	Li+p	5	0.050%	3.15E+12	6.299E+11
engineering difficult	Li+p	10	0.164%	1.02E+13	1.025E+12
	Li+p	25	0.471%	2.94E+13	1.176E+12
$M(e^{-},\gamma)$	U+e	20	0.396%	2.47E+13	1.236E+12
M(x, n) - Bremsstrahlung	U+e	50	2.520%	1.57E+14	3.146E+12
- nuclear photoeffect	U+e	100	5.695%	3.55E+14	3.555E+12
Interesting candidate	U+e	150	8.710%	5.44E+14	3.624E+12
14. September 2017	U+e	200	11.861%	7.40E+14	3.702E+12

Folie 31

Producing Neutrons

Our first choice: ${}^{9}Be(d,n)$ nuclear reaction

Efficient Coupling of Target to Moderator

no losses due to solid angle coverage!

Cold Source

Beam Extraction

 spallation sources: problem to "fill" the neutron guide, if larger divergence is allowed:

• HBS – relatively low radiation level \rightarrow guides can start very close to moderator:

⇒ efficient beam extraction in combination with modern beam transport system

Beam Extraction

HBS – relatively low radiation level \rightarrow optics can start very close to moderator

efficient beam extraction in combination with modern beam transport system

14. September 2017

Summary: Facility Layout and Parameters

The Jülich high-brilliance neutron source project

U. Rücker, T. Cronert, J. Voigt, J. P. Dabruck, P. -E. Doege, J. Ulrich, R. Nabbi, Y. Beßler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet and T. Brückel

Eur. Phys. J. Plus, 131 1 (2016) 19 DOI: http://dx.doi.org/10.1140/epjp/i2016-16019-5

Simulated Instrument Performance

JÜLICH FORSCHUNGSZENTRUM

For a medium flux HBS with 100 kW beam power, 100 mA peak current and 50 MeV deuteron energy

	Backscattering	Cold ToF	Thermal ToF
$E_{i,f} \pmod{1}$	1.84	5	45
$\frac{\Delta E_i}{E_i}$ (%)	1	2	5
$\Delta \check{ heta}(^{\circ})$	4	2	0.75
$\Delta t(\mu { m s})$	120	50	18
Rep. rate (Hz)	200	100	400
$Flux (cm^{-2}s^{-1})$	$2.5 imes 10^7$	$1.3 imes 10^5$	1×10^5
Reference instrument	OSIRIS	LET	MERLIN
Flux reference $(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$2.7 imes 10^7$	5×10^4	6×10^4

for one Neymar!

Desired Neutron Scenario in Europe

Have Fun With Neutrons !!!!

